

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / مني مغربي أحمد

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

1992

1992

ملاحظات: لا يوجد

THE PRODUCTION, IMMOBILIZATION AND APPLICATION OF LACTIC ACID BACTERIA AS A PROBIOTIC

By

MONA ABD-ALLAH ASHOUR MOHAMED

B.Sc. Agric. Sc. (Biotechnology), Fac. of Agric., Ain Shams University, 2012 M.Sc. Agric. Sc. (Agric. Microbiology), Fac. of Agric., Ain Shams University, 2017

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Degree of

in
Agricultural Sciences
(Agricultural Microbiology)

Department of Agricultural Microbiology
Faculty of Agriculture
Ain Shams University

Approval Sheet

THE PRODUCTION, IMMOBILIZATION AND APPLICATION OF LACTIC ACID BACTERIA AS A PROBIOTIC

By

MONA ABD-ALLAH ASHOUR MOHAMED

B.Sc. Agric. Sc. (Biotechnology), Fac. of Agric., Ain Shams University, 2012 M.Sc. Agric. Sc. (Agric. Microbiology), Fac. of Agric., Ain Shams University, 2017

This thesis for M. Sc. degree has been approved by:	
Dr. Nagwa Mahmoud Sidkey Prof. Emeritus of Microbiology and Environmental Faculty of Science, Al-Azhar University.	Biotechnology,
Dr. Tarek Saed Mohammed El-Tyeb Prof. of Agricultural Microbiology, Faculty of Shams University	Agriculture, Ain
Dr. Enas Abdel-Tawab Hassan Prof. of Agricultural Microbiology, Faculty of Shams University	Agriculture, Ain
Dr. Hemmat Mohamed Abdel-Hady Prof. Emeritus of Agricultural Microbiology, Facu Ain Shams University	lty of Agriculture,

Date of Examination: / /2022

THE PRODUCTION, IMMOBILIZATION AND APPLICATION OF LACTIC ACID BACTERIA AS A PROBIOTIC

By

MONA ABD-ALLAH ASHOUR MOHAMED

B.Sc. Agric. Sc. (Biotechnology), Fac. of Agric., Ain Shams University, 2012 M.Sc. Agric. Sc. (Agric. Microbiology), Fac. of Agric., Ain Shams University, 2017

Under the supervision of:

Dr. Abdel- Kader Hazem Taha

Prof. Emeritus of Agricultural Microbiology, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University (Principal supervisor)

Dr. Hemmat Mohamed Abdel-Hady

Prof. Emeritus of Agricultural Microbiology, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University

Dr. Enas Abdel-Tawab Hassan

Prof. of Agricultural Microbiology, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University

ABSTRACT

Mona Abd-Allah Ashour Mohammed: The Production, Immobilization and Application of Lactic Acid Bacteria as a Probiotic. Unpublished Ph. D. Thesis, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, 2022.

Lactic acid bacteria (LAB) are important microorganisms for the food industry due to their functional activity as starters and potential probiotic strains. Probiotic consumption had several health benefits, including improving intestinal health through microbiota regulation, stimulating and developing the immune system, synthesizing and enhancing the bioavailability of nutrients, reducing lactose intolerance symptoms. Therefore, this investigation was designed to obtain lactic acid bacterial strains that had ideal characteristics as a probiotic and exert beneficial effects.

In the present study, thirty nine isolates (from milk, yogurt, chesses, cream, and pickled) and collected bacterial strains were tested for their ability to hemolytic activity, antimicrobial activity and antibiotic resistance. Only five isolates (WC₁, CM₁, P₃, KC and GM₄) were selected as probiotic culture according to their safety assessment. These isolates were identified as the genera of LAB, based on morphological and biochemical traits, and characterized at the species level by using MALDI-TOF and VITEK techniques. The identified cocci shape strains were Streptococcus equinus WC₁, Streptococcus bovis CM₁, Streptococcus gallolyticus P₃, and rod shape strains were Lapidilactobacillus concavus KC and Limosilactobacillus reuteri GM4. These strains were studied evaluating technological and safety characteristics, including the ability to grow in bile salt, Aesculine hydrolysis, starch hydrolysis, gelatin hydrolysis, arginine hydrolysis, suger utilization, gas production, proteolytic activity, salt tolerance, catalase activity, grow at 30-37°C & low pH, and antimicrobial activity against pathogen. Using Arnold arish cheese whey as whole medium led to increase the cell dry weight of LAB about 42% comparing to MRS medium. The immobilized LAB cells were survived with ~ 10⁸ cfu/g during 90 days storage period. A total of 14 compounds were identified as major metabolites between *Streptococcus equinus* WC₁ & *Limosilactobacillus reuteri* GM₄ strains. Chromatid deletion and changes in chromosome structure and number were observed in bone marrow of mice given different doses of LAB as probiotic for two weeks MMC exposure increased significantly the chromosomal aberration and decreased significantly the mitotic activity of mice bone marrow cells comparing to control, whereas the vise versa was true for all subacute treatments of tested LAB. These treatment also recorded good adhesion ability to intestinal wall of mice with reduction the number of microflora. Moreover, no change in the normal structure of hepatic lobules of liver and the anatomy of the renal corpuscle & tubule structure of kidney was noticed at all treatments of LAB given to mice. These treatments were also reduced EST size and inducing apoptosis through the up-regulation of pro-apoptotic factors (*p53* and *Bax*) and down-regulation of anti-apoptotic factor (*Bcl2*).

Keywords: Probiotics; lactic acid bacteria; identification, characterization, antimicrobial activity, safety assessment, immobilization, GC-MS analysis, Chromosomal aberrations, Histopathological sections, apoptosis-regulatory genes, Ehrlich solid tumor mice, Antitumor and Antimutagenic.

ACKNOWLEDGEMENT

Special mention goes to my enthusiastic supervisor **Dr. Abdel-Kader Hazem Taha**, Prof. Emeritus of Agricultural Microbiology, Department of Agric. Microbiology, Faculty of Agriculture, Ain Shams University. My Ph.D. has been an amazing experience and I thank **Dr. Hazem** wholeheartedly, not only for his tremendous academic support, but also for giving me so many wonderful opportunities.

I would like to thank my thesis advisor dr. Hemmat Mohamed Abdel-Hady, Prof. Emeritus of Agricultural Microbiology, Department of Agric. Microbiology, Faculty of Agriculture, Ain Shams University. The door to Prof. dr. Hemmat office was always open whenever I ran into a trouble spot or had a question about my research or writing. She consistently allowed this paper to be my own work, but steered me in the right direction whenever she thought I needed it. It was fantastic to have the opportunity to work majority of my research in her facilities.

A very special gratitude goes out to **dr. Enas Abdel-Tawab Hassan,** Prof. of Agric. Microbiology, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University. Without her passionate participation and input, the validation survey could not have been successfully conducted.

Thanks should be extended to **Dr. Neima K. Al-Senosy** at Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt, for the great help and facilitation.

Finally, I must express my very profound gratitude to my parents, my family, my friends and to my colleagues in Department of Agric. Microbiology, Faculty of Agriculture, Ain Shams University for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without them. Thank you.

CONTENTS

		Page
1.	INTRODUCTION	1
2.	REVIEW OF LITERATURE	3
2.1.	Lactic acid bacteria as a probiotic	5
2.1.1.	Antimicrobials substances of Lactic Acid Bacteria	6
2.1.1.1.	Low molecular substances	7
2.1.1.2.	High molecular substances (Bacteriocins)	9
2.1.2.	Isolation and identification of LAB	10
2.2.	Probiotic characterization	11
2.2.1.	Acid and bile tolerance	11
2.2.2.	Haemolytic activity	13
2.2.3.	Antibiotic susceptibility	14
2.2.4.	Enzyme activity	15
2.2.5.	Adhesion ability	16
2.2.6.	Exopolysacchariedes	18
2.2.7.	Carbohydrate fermentation	19
2.2.8.	Nacl tolerance	19
2.2.9.	Incubation temperature of growth	20
2.3.	Potential attributed and benefits of probiotics	20
2.3.1.	Antimicrobial properties	21
2.3.2.	Anticarcinogenic properties	22
2.3.3.	Immunologic enhancement	23
2.3.4.	Enhancement of short-chain fatty acid production	24
2.3.5.	Production of antioxidants	25
2.3.6.	Probiotic on gastrointestinal manifestation	25
2.4.	Immobilization	27
2.5.	The therapeutic effect of LAB on cancer	
	suppression in vivo	28
2.5.1.	Apoptosis as anticancer mechanism	30
2.5.2.	Experimental models (Ehrlich solid mice model)	32

2.5.3.	Estimation of apoptosis-regulatory genes	
	expression with quantitative real-time PCR	35
2.5.4.	Chromosomal aberrations in metaphase cells	35
A.	Structural aberrations	37
B.	Numerical changes	37
3.	MATERIAL AND METHODS	39
3.1.	Food Samples	39
3.2.	Some industrial wastes	39
3.3.	Microorganisms used	39
3.4.	Media used	41
Med.1.	de Man, Rogosa and Sharpe agar (M.R.S).	41
Med.2.	Blood agar base medium.	41
Med.3.	Luria-Bertani (LB) agar medium.	42
Med.4.	Bile Aesculine agar	42
Med.5.	Nutrient gelatin medium	42
Med.6.	Starch hydrolysis medium	43
Med.7.	Skim milk agar	43
Med.8.	L-Arginine Dihydrolase Medium	43
3.5.	Preparation of solutions, reagents, and buffer	44
3.6.	Animals	44
3.7.	Maintenance of cultures	44
3.8.	Standard inoculum	44
3.9.	Isolation of lactic acid bacteria	45
3.10.	Identification and characterization of lactic acid	
	bacteria	45
3.10.1.	Phenotype characteristics	45
3.10.2.	Identification bacterial species	45
3.10.3.	Biochemical properties used	46
3.10.3.1.	Acid and gas production from glucose	46
3.10.3.2.	Arginine hydrolysis	47
3.10.3.3.	Gelatin hydrolysis	47
3.10.3.4.	Starch hydrolysis	47

3.11.	Safety assessment	47
3.11.1.	Virulence factors	47
3.11.2.	Antimicrobial activity	48
3.11.3.	Susceptibility to antibiotics	48
3.12.	Assessment of probiotic characteristics	49
3.12.1	Resistance to low pH	49
3.12.2.	Bile salts tolerance	49
3.12.3.	Aesculin hydrolysis	49
3.12.4.	Growth at NaCl concentrations	50
3.12.5.	Bacterial growth at different temperature	50
3.12.6.	Proteolytic activity	50
3.12.7.	Carbohydrate fermentation test	50
3.13.	Detection the growth behavior of LAB	51
3.14.	Use of some industrial by-products	51
3.15.	Gas chromatography-mass spectrometry (GC-MS)	
	analysis	51
3.16.	Immobilization of LAB strains in alginate beads	52
3.16.1.	Preparation of the bacterial inoculum	52
3.16.2.	Preparation of alginate as a polymer carrier-based	
	formulation	52
3.16.3.	Survival of bacteria on alginate beads	53
3.17.	Some application of LAB as a probiotic	53
3.17.1.	Antimutagenic and Anticarcinogenic activities of	
	lactic acid bacteria in vivo	53
3.17.1.1.	Preparation of experimental animals	53
3.17.1.2.	Experimental design and treatments:	54
3.17.1.3.	Preparation of somatic cell chromosomes:	54
3.17.1.4	.Mitotic Index (MI) %	55
3.17.1.5.	The tests of adhesion and survival in GI system	56
3.17.1.6.	Bacterial staining in intestine tissue	56
3.17.1.7.	Histopathological examination of liver and kidney	56
3.17.2.	LAB as Antitumor	56

3.17.2.1.	Preparation of Ehrlich solid-bearing tumors mice		
3.17.2.2.	Experimental design		
3.17.2.3.	Tumor assessment (tumor inhibition rate)		
3.17.2.4.	Determination of apoptosis-regulatory genes		
	expression by Quantitative- Real-Time		
	Polymerase Chain Reaction (qRT-PCR).	58	
3.17.2.4.1	.RNA extraction from tumor	58	
3.17.2.4.2.	Quantification of RNA using Nanodrop apparatus	60	
3.17.2.4.3.	cDNA synthesis	61	
3.17.2.4.4.	Real time PCR (qRT-PCR)	62	
3.17.2.4.5.	Primers preparation	62	
3.17.2.4.6.	Procedure of qRT-PCR	63	
3.17.2.5.	Histopathological examination of solid tumor	65	
3.18.	Statistical analysis	65	
3.19.	Calculation Growth parameters	65	
3.19.1.	The specific growth rate (μ) and doubling time		
	(td)	65	
3.19.2.	Number of generation (N) and multiplication rate		
	(MR)	66	
4.	RESULTS AND DISCUSSION	67	
4.1.	Isolation and screening of lactic acid bacteria	67	
4.2.	Safety assessment	70	
4.2.1.	Hemolytic activity	70	
4.2.2.	Acid and Gas production from glucose	71	
4.2.3.	Antimicrobial effect	72	
4.2.4.	Antibiotic susceptibility	74	
4.3.	Identification of lactic acid bacterial isolates	76	
4.4.	Probiotic properties	77	
4.4.1.	Enzyme activity:	77	
4.4.2.	Bile salts Tolerance	79	
4.4.3.	Carbohydrate fermentation test	82	
4.4.4.	Growth at different incubation temperatures	83	