

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / مني مغربي أحمد

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

1992

1992

ملاحظات: لا يوجد

Antitumor Efficacy of Gallic Acid-Coated Gallium Nanoparticles on Hepatocellular Tumor Model

A Thesis

Submitted in the Fulfillment of the Degree of Ph.D. in Biochemistry

Presented By

Nihal Moustafa Ahmed Mansour (M.Sc. in Biochemistry, 2015)

Under Supervision of

Prof. Dr. Ahmed M. Salem

Professor of Biochemistry Biochemistry Department Faculty of Science Ain Shams University

Prof. Dr. Eman I. Kandil

Professor of Biochemistry Biochemistry Department Faculty of Science Ain Shams University

Prof. Dr. Somaya Z. Mansour

Professor of Biochemistry
Radiation Biology Department
National Center of Radiation
Research and Technology (NCRRT)
Atomic Energy Authority (AEA)

Prof. Dr. Sawsan M. El-sonbaty

Professor of Biochemistry
Radiation Biology Department
National Center of Radiation
Research and Technology (NCRRT)
Atomic Energy Authority (AEA)

Dr. Fatma S. Moawed

Assistant Professor of Biochemistry Radiation Biology Department National Center of Radiation Research and Technology (NCRRT) Atomic Energy Authority (AEA)

بسم الله الرحمن الرحيم

" رَبِّ أَوْزِعْنِي أَنْ أَشْكُرَ نِعْمَتَكَ الَّتِي أَنْ أَشْكُرَ نِعْمَتَكَ الَّتِي أَنْ عَمْلَ صَالِحًا أَنْعَمْتَ عَلَيَ وَعَلَىٰ وَالِدَيَّ وَأَنْ أَعْمَلَ صَالِحًا تَرْضَاهُ وَأَصْلِحْ لِي فِي ذُرِيَّتِي ﴿ إِنِّي تُبْتُ تُرْسَاهُ وَأَصْلِحْ لِي فِي ذُرِيَّتِي ﴿ إِنِّي تُبْتُ الْمُسْلِمِينَ " إِلَيْكَ وَإِنِّي مِنَ الْمُسْلِمِينَ "

صدق الله العظيم
" سورة الأحقاف...آيه رقم ه ١"

Declaration

- I declare that the work of this thesis is a record that has been done by myself.
 - This thesis has not been submitted for a degree at this or any other university.

Dedication

To my Mother, my Father, my Husband And

To my Children

For their love, encouragement, help and prayers, during the course of my life, that made my studies possible and to them I owe everything.

Acknowledgment

First and foremost, cordial thanks to Allah.

No words could express my sincere appreciation and deepest thanks to *Prof. Dr. Ahmed M. Salem*, Professor of Biochemistry, Faculty of Science, Ain Shams University, for his endless help, fatherly attitude, creative thinking, valuable suggestions, and constant encouragement throughout this research work. Without his support, the performance of this work would be difficult.

I am so grateful to *Prof. Dr. Eman I. Kandil*, Professor of Biochemistry, Faculty of Science, Ain Shams University, for her spiritual and practical guidance, her enthusiastic encouragement and revision of every detail, as well as profound reading of the manuscript. Actually, she was more than a supervisor, she was a teacher who inspired me and pushed me forward.

Also, I am deeply indebted and sincerely thankful to *Prof. Dr. Somaya Z. Mansour*, Professor of Biochemistry, Radiation Biology Department, Atomic Energy Authority, for suggesting the point, instructive guidance, tremendous concern and care, and invaluable practical assistance. I am very much honored to have her as my supervisor.

I would like to express my deep thanks to *Prof. Dr. Sawsan M. El-sonbaty*, Professor of Biochemistry, Radiation Biology Department, Atomic Energy Authority, for her sustained encouragement, great assistance, and kind help in preparing the novel nanocomplex used in this research work.

My sincere thanks and regards to *Dr. Fatma S. Moawed*, Assistant Professor of Biochemistry, Radiation Biology Department, Atomic Energy Authority, for her help during the fulfillment of the biological experiments, and tremendous encouragement. I am very pleased to deal with her.

I would also like to acknowledge *Prof. Dr. Adel B. Kholousy*, Professor of Pathology, Cairo University, for his great effort in the histopathological examination of liver biopsies of the whole studied rat groups.

Besides my advisors, I would like to thank the staff members of the Biochemistry Department, Faculty of Science, Ain Shams University and Atomic Energy Authority for their support and help.

Also, great thanks and gratitude to *My Husband*, his patience and continuous encouragement were the dynamo that gave me the power to accomplish my work.

Last but not least, no words could express my sincere appreciation and deepest thanks to *My Mother and Father* for their sincere help and encouragement during the course of my life. I ask Allah to bless them. I dedicate this thesis to them and to my husband.

Nihal M. Mansour

February 2022

Biography

Name: Nihal Moustafa Ahmed Mohammed Mansour.

Date and place

13/9/1987, Kuwait.

of birth:

Date of

graduation:

2008.

Degrees B.Sc. in Biochemistry, (2008) - M.Sc. in

awarded: Biochemistry/Oncology, (2015).

Grade of B.Sc.: Excellent with Degree of Honor.

Occupation: Assistant Lecturer - Biochemistry

Department, Faculty of Science, Ain

Shams University.

	Page
Abstract	i
List of Abbreviations	iii
List of Figures	viii
List of Tables	xiv
Introduction	1
Aim of the Work	6
I. Review of Literature	7
1. Global burden of cancer	7
2. Carcinogenesis: From fundamentals to hallmarks of cancer	8
3. Cancer therapeutics	12
3.1. Conventional approaches for cancer treatment	12
3.1.a. Cisplatin: 1 st metal-based chemotherapeutic agent	14
3.1.b. Obstacles of CDDP therapy	16
3.2 Innovative approaches for cancer treatment: Current	19
perspectives and new challenges	19
4. Therapeutic targeting in the hallmarks of cancer:	21
Treatments driven by tumor biology	21
4.1 Nanomedicine: A new era of successful targeted therapy	23
4.1.a. Types of therapeutic NPs	23
4.1.b. Primacy of nanotherapeutics over current therapies	24
4.1.c. Targeting strategies of NP-based drug delivery	25
4.1.d. Challenges in clinical translation of nanomedicine	27
5. The dual role of liver in nanomedicine	28
5.1. Liver as a clearance organ of the nanostructures	29
5.1.a. Mechanisms beyond hepatic clearance of NPs	29
5.1.b. Nanoparticle functionalization to improve distribution	30
properties: Tenets in NPs synthesis	
5.2. Liver as a therapeutic target for NP-based strategies	31
5.2.a. Epidemiology of hepatocellular carcinoma (HCC)	32
5.2.b. Molecular landscape of HCC	34
5.2.c. Therapeutic options of HCC: Current opportunities and	37
future challenges	31
5.2.d. Current status of nanomaterial-based treatment for HCC	38
6. Green nanotechnology: A new hope for HCC remedy	39
6.1. Bio-inspired green NPs over chemically synthesized NPs	40

6.2. Plant-mediated biosynthesis of NPs	42
7. Rationale for tailoring an alternative oncology trial using	43
bio-inspired green nanotechnology	43
7.1. Gallium (metal-core): Iron-mimetic cancer crusher	43
7.1.1. Chemistry of gallium	44
7.1.2. Therapeutic gallium compounds	45
7.1.3. Antineoplastic mechanisms of clinically used gallium	47
compounds	47
7.1.3.1. Iron mimicry and beyond: Multiple sites of gallium	47
action	
7.1.3.2. Cellular and molecular targets of gallium	49
I. Actions of gallium related to iron homeostasis (Iron targets	49
of gallium)	49
I.A. Iron dependent-induction of apoptosis	49 49
I.A.a. Inhibition of cellular iron uptake and cell proliferation	
I.A.b. Inhibition of iron-dependent ribonucleotide reductase	49
I.A.c. Action on the mitochondria	50
I.B. Inhibition of inflammation	52
II. Actions of gallium unrelated to iron homeostasis (Non-iron targets of gallium)	53
II.A. Iron-independent apoptotic induction	53
II.B. Inhibition of angiogenesis and metastasis	53
II.C. Proteasome inhibition	54
II.D. Other sites of gallium action	54
7.1.4. Gallium-based metallodrugs at the interface of	
HCC	55
7.1.5. Overcoming possible limitations of gallium compounds in	55
use	
7.2. Gallic acid-Ancillary ligand: Molecular rival of cancer	56
7.2.1. Gallic acid: From chemistry to medicine	56
7.2.2. Dual edge sword behavior of gallic acid	58
A. Prooxidant behavior	58
B. Antioxidant behavior	59
7.2.3. Multitargeted molecular mechanisms of gallic acid in	59
cancer cells	
Therapeutic targets and prospects of gallic acid anticancer	60
activity	
I. Regulation of critical oncogenic signaling pathways	60
I.A. Inhibition of EGFR signaling pathway	60
I.B. Activation of ATM kinase	61
I.C. Interfering with AKT-mTOR signaling pathway	61
II. Apoptosis induction	61

II.A. Intrinsic and extrinsic pathways of apoptosis	62
II.B. ROS-dependent apoptotic mechanisms	63
II.C. Ribonucleotide reductase (RR)	64
II.D. Other mechanistic insights of apoptosis induction	63
III. Modulation of inflammation	64
IV. Inhibition of metastasis and invasion	65
V. Cell cycle arrest	65
VI. Anti-angiogenic effect	66
7.2.4. Gallic acid at the interface of HCC	66
8. Biomarkers targeting hallmarks: Possible GA-GaNPs drug	68
oncotargets	
8.1. Biomarkers targeting sustained cellular proliferation	69
8.1.a. Iron at the interface of HCC	69
8.1.b. Alpha(α)-fetoprotein (AFP)	70
8.1.c. Protooncogene c-Myc	70
8.1.d. Heat shock protein-70 (Hsp70)	72
8.2. Biomarkers targeting apoptosis (intrinsic pathway)	74
8.2.a. Cytochrome C (Cyt-c)	75
8.2.b. Caspase-9 (CASP9)	76
8.2.c. Oxidative stress	77
8.3. Biomarkers targeting angiogenesis	78
8.3.a. Vascular endothelial growth factor (VEGF)	78
II. Materials and Methods	79
1. Materials	79
I. Chemicals and drugs	79
II. Cell line	81
III. Experimental animals	81
2- Methods "Work-Flow Design"	82
I. Chemical studies	82
I.1. Green synthesis of gallic acid-coated gallium nanoparticles (GA-GaNPs)	82
I.2. Physicochemical structural characterization of GA-GaNPs	83
I.2.A. Transmission electron microscopy (TEM)	83
I.2.B. Dynamic light scattering (DLS)	84
I.2.C. Fourier-transform infrared spectroscopy (FTIR)	85
I.2.D. Ultraviolet-visible (UV-Vis) spectroscopy	86
II. Biochemical studies	87
II.1. In vitro study	87
II.1.A. MTT-mediated cytotoxicity assay	87

II.2. In vivo studies
II.2.1. Short-term acute toxicity study
II.2.2. Long-term in vivo experiment: Evaluation of GA-
GaNPs antineoplastic efficacy
II.2.2.1. Carcinogen and drugs preparation for in vivo
application
II.2.2.2. Chemical induction of hepatocarcinogenesis
II.2.2.3. Experimental design (Treatment schedule)
II.2.2.4. Sample collection.
a. Blood sampling and plasma preparation
b. Tissue sampling
II.2.2.5. Biochemical analyses
i. Iron panel
i.1. Determination of total iron (Fe ⁺²) concentration
i.2. Determination of total iron-binding capacity (TIBC)
ii. Gene expression analysis
ii.1. RNA extraction
ii.2. cDNA synthesis
ii.3. Real-time polymerase chain reaction (RT-PCR)
iii. Biological markers tracking
iii.1. Alpha (α)-fetoprotein assay: Tumorigenic marker
iii.2. Caspase-9 assay: Apoptotic marker
iii.3. Vascular endothelial growth factor assay: Angiogenic
marker
iii.4. Oxidative stress biomarkers
iii.4.a. Assessment of reduced glutathione (GSH) content iii.4.b. Assessment of superoxide dismutase (SOD) activity
iii.4.c. Catalase (CAT) assay
iii.5. Assessment of lipid peroxidation (LPO): Tissue damage
marker
iv. Routine paraclinical investigations
iv.1. Liver damage biomarkers
iv.1.a. Determination of albumin (Alb) concentration
iv.1.b. Estimation of total bilirubin (T.Bil) concentration
iv.1.c. Estimation of alkaline phosphatase (ALP) activity
iv.1.d. Determination of alanine amino-transferase (ALT) activity.
iv.1.e. Determination of aspartate amino-transferase (AST)
activity
iv.2. Kidney damage biomarkers
iv.2.a. Assessment of creatinine (Cr) concentration

iv.2.b. Determination of urea concentration: Urease-modified Berthelot reaction.	142
III. Histopathological survey	144
IV. Statistical analyses	144
Summary of Materials and Methods	145
III. Results	146
Synopsis of Results	218
IV. Discussion	220
Summary and Conclusion	255
V. References	261
Arabic summary	
Arabic abstract	

Antitumor Efficacy of Gallic Acid-Coated Gallium Nanoparticles on Hepatocellular Tumor Model

Nihal Moustafa A. Mansour

Faculty of Science, Ain Shams University Cairo, Egypt.

Abstract

In the fight against cancer, cisplatin (CDDP) is most widely used as a clinical mainstay for the chemotherapy of various human cancers. Meanwhile, its cytotoxic profile, serious side effects, as well as drug resistance limit its widespread application. The goal of precision medicine is to generate better responses in the clinic, otherwise, to tailor an optimized therapeutic program based on the biology of the disease. In recent years, green nanotechnology has been demonstrated to be promising in this scenario. Accordingly, a novel gallium-based nanocomplex, namely gallic acid-coated gallium nanoparticles (GA-GaNPs), has been currently developed and evaluated for its antineoplastic efficacy alone and/or combined with CDDP. A precise structural characterization of the emergent GA-GaNPs nanocomplex has been evident via a panel of physicochemical analyses. In essence, the work comprised a series of both *in vitro* and *in vivo* investigations. The test compounds were in vitro biologically evaluated for cytotoxicity upon human hepatocellular HepG2 cancer cell line using the tetrazolium MTT assay. Considering the hallmarks of cancer, the *in vivo* therapeutic of chemical efficacy such treatments against a hepatocarcinogenesis model was further evaluated by tracking 4axes mechanistic aspects, including iron homeostasis aspects, gene expression aspects, biological markers aspects, and routine paraclinical aspects.

In tandem, the work also implied a histopathological survey upon liver biopsies of the whole studied groups. Basically, the in vitro results established that GA-GaNPs exhibited superior anticancer potential than CDDP, as it recorded a lower IC₅₀ value. Else more, the results of the in vivo experiment highlighted that GA-GaNPs treatment could diminish key hallmarks of cancer by ameliorating most of the investigated biomarkers. This was wellappreciated with the histopathological alteration findings of the liver architectures of the treated groups. Collectively, the existing results could speculate that the reaction of Ga(NO₃)₃ with GA, following the principles of green synthesis of nanoparticles, resulted in super-additive anticarcinogenic effects. In conclusion, our findings suggest that novel biogenic Ga-based nanocomplexes may potentially present new hope for the development of alternative liver cancer therapeutics, which should attract further scientific and pharmaceutical interest.

Keywords Hepatocellular carcinoma (HCC), Cisplatin (CDDP), Green nanotechnology, Gallium (Ga), Gallic acid (GA).