

بسم الله الرحمن الرحيم

000000

تم رقع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكثولوجيا المطومات دون أدنى مسنولية عن محتوى هذه الرسالة.

NA		T R	ملاحظات:
4 1	6997		
	AIMSWAM	R. MININERRINA.	
1	5/15/20	1992	- 1 3 m. f

بمكات وتكنولوجبارته

Assessment of Indeterminate Breast lesions (BIRADS 4): Utility of Contrast Enhanced Mammography

Thesis

Submitted for Partial Fulfillment of MD Degree in Radiodiagnosis

 $\mathcal{B}y$

Nermin Fathy Guergis

M.B.B; CH, M.Sc Ain Shams University

Supervised by

Prof. Dr. Sherine Kadry Amin

Professor of Radiodiagnosis Faculty of Medicine, Ain Shams University

Prof. Dr. Lobna Abdel Moniem

Professor of Radiodiagnosis Faculty of Medicine, Ain Shams University

Dr. Susan Adil Ali Abdul Rahim

Lecturer of Radiodiagnosis
Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2022

Acknowledgments

First and foremost, I am indebted to GOD for granting me the ability to accomplish this work.

I would like to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Sherine Kadry Amin,**Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for her meticulous supervision, kind guidance, valuable instructions and generous help.

I am also deeply thankful to **Prof. Dr. Lobna Abdel**Moniem, Professor of Radiodiagnosis, Faculty of Medicine,
Ain Shams University, for her sincere efforts, outstanding support, continuous encouragement and patience.

Special thanks are also due to **Dr. Susan Adil Ali Abdul Rahim,** Lecturer of Radiodiagnosis, Faculty of

Medicine, Ain Shams University, for her great help, guidance
and valuable advice.

I would also like to express my immense gratitude to my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all the patients who participated in this study.

Nermin Fathy Guergis

Tist of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	vi
Introduction	1
Aim of the Work	4
Review of Literature	
Chapter 1: Anatomy of the Breast	5
Chapter 2: Pathology of Breast Masses	18
Chapter 3: Physical Principle and Technique of Conta Enhanced Mammography	
Chapter 4: Assessment of Indeterminate Breast Lesic Contrast Enhanced Mammography	-
Patients and Methods	78
Results	83
Illustrative Cases	96
Discussion	128
Summary and Conclusion	133
References	135
Arabic Summary	

Tist of Tables

Table No	. Title Page No.	
Table 1:	A suggested template for reporting CEM	71
Table 2:	Focus descriptors	72
Table 3:	Mass descriptors	73
Table 4:	Non-mass enhancement descriptors	74
Table 5:	Distribution of lesions according to the tissue specific diagnosis	85
Table 6:	Correlation between the appearance of the lesions on sono-mammography and their final diagnosis	86
Table 7:	Distribution of enhancing lesions according to the type of enhancement in benign and malignant group	88
Table 8:	Diagnostic performance of CEM in characterization of sono-mamographically diagnosed BIRADS 4 breast lesions.	94

List of Figures

Fig. No.	Title	Page No.
Figure 1:	The normal embryologic devel	-
Figure 2:	Normal anatomy of the breast	8
Figure 3:	Arterial branches to the breast (the trunk)	
Figure 4:	Lymph node groups (anterior vaxillary region)	
Figure 5:	Standard mammographic promediolateral-oblique (MLO) (b) (CC) projections	cranio-caudal
Figure 6:	Breast densities	14
Figure 7:	Normal ultrasound breast anato	my17
Figure 8:	Components of fibrocystic change	e20
Figure 9:	Fibroadenoma	24
Figure 10:	Phylloides tumor	25
Figure 11:	Lobular carcinoma in situ	32
Figure 12:	Microinvasive lobular carcinoma	33
Figure 13:	Invasive tubular carcinoma	34
Figure 14:	Invasive medullary carcinoma	35
Figure 15:	Invasive mucinous carcinoma	36
Figure 16:	Invasive secretory carcinoma	37
Figure 17:	Inflammatory breast carcinoma.	37
Figure 18:	Example of contrast-enhanced m	ammography41

Tist of Figures cont...

Fig. No.	Title Pa	ge No.
Figure 19:	Acquisition of CEM images	42
Figure 20:	False positive finding on CEM	46
Figure 21:	Mutlifocal, multicenteric invasive carcinoma	
Figure 22:	Neoadjuvant chemotherapy resident monitoring using contrast-enhammography	anced
Figure 23:	Breast density categories	53
Figure 24:	BI-RADS standardized description of mas	ses55
Figure 25:	BI-RADS standardized description calcifications	
Figure 26:	Mammographic appearance of an architedistortion	
Figure 27:	An 81-year-old woman with history of left invasive ductal carcinoma treated lumpectomy and radiation therapy in 2001.	with
Figure 28:	Fibroadenoma	
Figure 29:	Malignant lesions by ultrasound	62
Figure 30:	Skin appearance on CEM	63
Figure 31:	Pectoral appearance on CEM	64
Figure 32:	Vessels on CEM	65
Figure 33:	Mole enhancement on CEM	66
Figure 34:	Calcifications on CEM	67
Figure 35:	Misregistration artifact on CEM	68
Figure 36:	Background parenchymal enhancemer CEM	

Tist of Figures cont...

Fig. No.	Title	Page No.
Figure 37:	Distribution patterns of enhancement (NME)	
Figure 38:	Internal enhancement patterns enhancement	
Figure 39:	Box-and-whisker plot of the ages	of all patients83
Figure 40:	Bar chart showing the distribut according to patients' complaints	-
Figure 41:	Bar chart showing the distribut according to the ACR breast dens	•
Figure 42:	Clustered column chart distribution of enhancing and lesions in benign and malignant significant association see enhancement and the nature of the	non-enhancing groups with a en between
Figure 43:	Clustered column chart distribution of enhancing lesion the type of enhancement in malignant groups	s according to benign and
Figure 44:	Clustered column chart distribution of enhancing according to shape in benign a groups	mass lesions and malignant
Figure 45:	Clustered column chart distribution of enhancing according to lesion margins i malignant groups.	mass lesions n benign and
Figure 46:		_

Tist of Figures cont...

Fig. No.	Title	Page No.
Figure 47:	Clustered column chart distribution of enhancing according to intensity of enhance and malignant groups	mass lesions ement in benign
Figure 48:	Clustered column chart distribution of non mass en according to pattern of enhance and malignant groups	hancing lesions ement in benign
Figure 49:	Clustered column chart distribution of non mass en according to intensity of enhance and malignant groups	hancing lesions ement in benign
Figure 50:	Clustered column chart distribution of non mass en according to their regional dis- the breast in benign and malign	hancing lesions tribution within

Tist of Abbreviations

Abb.	Full term
2D	Two dimensional
ACR	American college of Radiology
BIRADS	Breast Imaging Reporting and Data System
CC	Craniocaudal
CEDM	Contrast enhanced dual energy mammography
CEM	Contrast enhanced mammography
CESM	Contrast enhanced spectral mammography
CFN	Centimeters from the nipple
CIN	Contrast induced nephropathy
CT	Computed Tomography
FFDM	Full field digital mammography
HE	High energy imaging
kVp	Kilo voltage
LE	Low energy imaging
MLO	Mediolateral oblique
MRI	Magnetic Resonance Imaging
NME	Non-mass enhancement
UOQ	Upper outer quadrant
US guided	Ultrasound guided

Introduction

reast cancer is the most common cancer in women across the world. Between 2008 and 2012, worldwide breast cancer incidence rates have increased 20% and mortality rates have increased 14% (*Luczynska et al.*, 2015). In Egypt, breast cancer is estimated to be the most common cancer among females accounting for 37.7% of their total and is also the leading cause of death due to cancer, accounting for 29.1% (Zeeneldin et al., 2013).

It is therefore of utmost importance to find an accurate and cost-effective way to detect and diagnose breast cancers in women across different age groups and different economic levels (Luczynska et al., 2015).

Early detection of breast cancer by X-ray mammography screening has been shown to reduce mortality; however, it is limited by moderate sensitivity and specificity especially in dense breasts. To overcome these limitations, further workup of suspicious mammography findings may become necessary, by using additional mammographic views or by ultrasound or by contrast enhanced breast magnetic resonance imaging (MRI) (Tabar et al., 2011).

Ultrasound is a complementary technique to mammography however; manual US examinations are time-consuming, operator dependant and any findings have to be characterized during the procedure with limited possibility of a second independent evaluation of the already captured images (*Dromain et al.*, 2011).

Breast cancers are well known to enhance after the administration of contrast agents, because tumoral microvessels form rapidly and consequently often have 'leaky' basement membranes. This makes the vessels permeable to contrast agent, resulting in tumor enhancement (Lobbes et al., 2014). Contrastenhanced breast imaging techniques like CT and MRI are used for the detection of angiogenesis in suspicious tissues. However, CT has the disadvantage of high radiation doses despite its reported use in the detection of breast carcinoma (Jochelson et al., 2013).

Contrast-enhanced MRI is currently the most sensitive breast cancer detection technique, but is costly, not always available and may result in high false positive rates. Also patients with pacemakers, certain aneurysm clips, metal implants or severe claustrophobia are unable to undergo MRI (Luczynska et al., 2014).

Contrast-enhanced mammography (CEM) is a relatively new tool among breast imaging protocols, which combines full field digital mammography (FFDM) with intravenous contrast utilization (*Daniaux et al.*, 2015). In CEM, a pair of images is acquired for each view: one low-energy image (LE), which is similar to a standard mammogram, and one high-energy image (HE), which is optimized for the detection of iodine contrast agent uptake; the two images are then combined to create an image where glandular tissue is suppressed and contrast uptake is highlighted (Fallenberg et al., 2014).

principal Since the behind Contrast-enhanced mammography is similar to that of breast MRI, it is to be expected that many indications for breast MRI could apply to Contrast-enhanced mammography (Lobbes et al., 2013).

CEM can serve as a valuable tool in the further evaluation of extremely dense breast tissue, in the diagnostic assessment of suspicious lesions, in breast cancer staging, in surgical planning, and in the assessment of treatment response. It can help characterize and guide management particularly when multiple suspicious findings are detected during the initial screening mammogram (Bhimani et al., 2017).

AIM OF THE WORK

o investigate the usefulness of dual energy contrast enhanced mammography in the assessment of indeterminate breast lesions (BIRADS 4).

ANATOMY OF THE BREAST

Embryology of the Breast

ammary glands are a modified and highly specialized type of sweat gland. During the 5th or 6th week of fetal development, two bands of thickened ectoderm, extending from the axillary to the inguinal regions, become apparent. These bands are known as mammary ridges from which mammary buds begin to develop in the form of solid down-growths of epidermis into the underlying mesenchyme. As the human embryo continues to develop, the mammary ridges disappear except for small portions that may persist in the pectoral regions (*Pandya and Moore*, 2011).

The in-growth of the ectoderm results in the formation of the primary bud which in turn gives rise to 15-20 secondary buds that develop into lactiferous ducts and their branches (**Fig. 1**) At birth, only the main lactiferous ducts have formed and the mammary glands themselves are underdeveloped until puberty (*Pandya and Moore*, 2011).