

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / حسام الدين محمد مغربي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

ملاحظات: لا يوجد

MICROBIOLOGICAL MANAGEMENT OF SOME AGRICULTURAL WASTES

By

SODAF AHMED AHMED KARMANY MAAN

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Ain Shams University, 2011 M.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Ain Shams University, 2017

A Thesis Submitted in Partial Fulfillment Of

The Requirement for the Degree of

DOCTOR OF PHILOSOPHY in

Agricultural Sciences (**Agric. Microbioloy**)

Department of Agricultural Microbiology Faculty of Agriculture Ain Shams University

2022

Approval Sheet

MICROBIOLOGICAL MANAGEMENT OF SOME AGRICULTURAL WASTES

By

SODAF AHMED AHMED KARMANY MAAN

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Ain Shams University, 2011 M.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Ain Shams University, 2017

This thesis for Ph. Degree has been approved by:
Dr. Hassan Moawad Abdel AL Prof. Emeritus of Agric. Microbiology, National Research Centre.
Dr. Sohair Ahmed Ibrahim Nasr Prof. Emeritus of Microbiology, Faculty of Agriculture, Ain Shams University.
Dr. Enas Abd El-Tawab Hassan Prof. of Microbiology, Faculty of Agriculture, Ain Shams University.
Dr. Abd El-Wahab Mohamed Abd El- Hafez Prof. Emeritus of Microbiology, Faculty of Agriculture, Ain Shams University.
Date of Examination: / / 2022

MICROBIOLOGICAL MANAGEMENT OF SOME AGRICULTURAL WASTES

By

SODAF AHMED AHMED KARMANY MAAN

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Ain Shams University, 2011 M.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Ain Shams University, 2017

Under the supervision of:

Dr. Abd El-Wahab Mohamed Abd El- Hafez

Prof. Emeritus of Agric.Microbiology, Department of Microbiology, Faculty of Agriculture, Ain Shams University (Principal supervisor)

Dr. Enas Abd El-Tawab Hassan

Prof. of Agric. Microbiology, Department of Microbiology, Faculty of Agriculture, Ain Shams University

ABSTRACT

Sodaf Ahmed Ahmed Karmany Maan "Microbiological Management of Some Agricultural Wastes." Unpublished Ph.D. Thesis, Department of Agric. Microbiology. Faculty of Agriculture, Ain Shams University, 2022.

To avoid negative environmental and economic impact of agricultural wastes, the reuse of agricultural waste is necessary. The problem of agriculture wastes becomes very obvious and aggregated after the harvest of crops. Therefore, utilization of agriculture wastes in any other environmentally friendly way is very important. This study was performed to evaluate the used hydrolyses of agro-wastes as low cost carbon and nitrogen source for use in enzymes and bioethanol production. Some agricultural wastes (Corn cobs, corn stover, sugar can bagasse, sugar beet pulp) were chosen in this study as a carbon source. The chemical analyses of tested wastes showed different composition of cellulose, lignin, hemicellulose, organic matter, organic carbon, nitrogen, ash, fat and total solid. Thirty-five fungal, 25 actinomycetes and 20 bacterial isolates were isolated and investigated for lignocellulotic enzyme activity plate assay. The selected cultures were grown on tested agricultural wastes (5g/100 ml medium) to evaluate their efficiency of biodegradation of these wastes as carbon source by determining soluble sugar and protein in fermentable broth. The results showed that the enzymatic activities were indeed the highest on corn cobs and sugar beet pulp. The selected cultures (3 fungal, 2 bacterial and 3 actinomycetes isolates) were grown of medium containing soybean okara and sesame husk (0.1%N) as nitrogen source with corn cobs and sugar beet pulp as a carbon sources. Aspergillus sp. F24, Bacillus sp. B5 and actinomycetes A25 showed high degradation efficiency. These isolates were inoculated on low-cost-medium containing corn cobs or sugar beet pulp as carbon source and various concentrations (0.2, 0.3 and 0.4%) of soybean okara and sesame husk as a nitrogen source. As a secondary screening, the maximum yield of soluble sugar and protein were obtained on sugar beet pulp and corn cobs mixed with soybean okara (0.3%) or sesame husk (0.3% and 0.4%) inoculated with tested microbial

cultures. Different concentrations of corn cobs and sugar beet (5, 10, 15, g/100ml medium) were mixed with optimal concentrations of nitrogen sources and inoculated by fungal (F₇, F₂₄) & bacterial (B₅) and actinomycetes (A₂₅) isolates. The results showed that ten gram of sugar beet and 10 and 15 g of corn cobs as carbon source achieved high soluble sugar and protein in fermentable broth. The most efficiency fungal Aspergillus sp. F24 and actinomycetes A25 isolates were genetically identified for Aspergillus niger and Streptomyces cellulase. The cellulase, xylanase, laccase activities and soluble sugar were determined in fermentable broth of Aspergillus niger F24, Streptomyces cellulase A25 growing under optimal concentrations of carbon and nitrogen sources during 16 days. The results indicated that cellulase, xylanase and laccase were maximum at 10 - 14 days on sugar beet pulp (10g) or corn cobs (10 & 15) with soybean okara or sesame husk as nitrogen sources, whereas soluble sugar was at 14 days with the same treatments. The sugars content of fermentable broth were identified by HPLC RI Detector. The efficiency of four strains of S. cerevisiae for bio-ethanol production was evaluated on Cheng et al., (2009) medium and sterilized fermentable broth of selected culture. S. cerevisiae (AUMC 14720) gave the highest value of bio-ethanol on fungal fermentable broth after 4 days. Fermentable broth with or without sterilization was used for producing bioethanol by S. cerevisiae (AUMC 14720). It was found that autoclaved fermentable broth achieved the maximum bioethanol production. The low-cost medium was supplemented by salt solution to assay its effect on bioethanol production. Adding of salt solution improved the production by 1.7 & 1.2 fold when using sugar beet pulp and soybean okara for growing the fungal and bacterial strains respectively. Under the optimal condition, S. cerevisiae AUMC 14720 produced the maximum production (16.6 g /L bioethanol) after 72 h. with 41.59% conversion coefficient, 36.36% bioethanol yield and 87.42% sugar utilizing efficiency.

Keywords: Lignocellulosic wastes, Biological degradation, Fermentable broth, Bioethanol, *Saccharomyces cerevisiae*, *Aspergillus niger* and *Streptomyces cellulase*.

ACKNOWLEDGMENT

Special thanks are due to **Prof. Dr. Abd El Wahab Abd El Hafez**, Professor Emeritus of Agric. Microbiology, Department of Agric. Microbiology, Faculty of Agric. Ain Shams University for his fatherhood, teaching, guidance, kindness, valuable advises and the very important scientific support.

Great thanks are to **Prof. Dr. Enas Abd El-Tawab Hassan**, head of Department of Agric. Microbiology, Faculty of Agric. Ain Shams University, for her accurate supervision, faithful attitude to me from the beginning to the end of this work, for her valuable time, sisterhood, close guidance and keen interest.

I would also like to thank all the fallows in Department of Agric. Microbiology, of Agriculture, Ain Shams University, for support during this study.

Sincere thanks also extended to all my colleagues and staff members of the Unit of Biofertilizers, Fac. Agric., Ain Shams Univ. for providing facilities and encouragement.

Thanks from my deep heart and appreciation to my family for their precious understanding, helpful support, patience, and encouragement over my life.

CONTENTS

		Page
	LIST OF TABLES	IV
	LIST OF FIGURES	XII
1.	INTRODUCTION	1
2.	REVIEW OF LITRATURE	3
	2.1. Agricultural waste	3
	2.2. Types of agro-industrial wastes	4
	2.3. Environmental consequences of agricultural residues	
	management strategy	5
	2.4. Chemical composition of agricultural wastes	5
	2.4.1. Cellulose	6
	2.4.2. Hemicellulose	6
	2.4.3. Lignin	6
	2.5. Pretreatment of lignocellulosic biomass	7
	2.5.1. Physical pretreatment	7
	2.5.2. Chemical pretreatment	8
	2.5.3. Physico-chemical pretreatment	9
	2.5.4. Biological pretreatment	10
	2.6. Importance of biological pretreatment	11
	2.7. Common microorganisms involved in biological	
	Pretreatment	11
	2.8. Enzymes involved in biological pretreatment	13
	2.8.1. Cellulases	13
	2.8.2. Hemicellulases	14
	2.8.3. Ligninases	14
	2.9. Various Process Parameters Affecting Biological	
	Pretreatment of lignocellulose	15
	2.10. Utilization of agro-industrial wastes	15
	2.10.1. Composting	17
	2.10.2. Bio-fuel production	18

	2.10.3. Antibiotic production	20
	2.10.4. Enzyme production	21
	2.10.5. Mushroom production	22
	2.10.6. Pesticides	23
3.	MATERIALS AND METHODS	24
	3.1. Materials	24
	3.1.1. Agro-waste substrates and source of microbial	
	isolates	24
	3.1.2. Source of yeast strains	24
	3.1.3. Media used Med.1. Czapek's medium	25
	Med.2. Malt medium	25
	Med.3. Potato dextrose agar medium (PDA)	26
	Med.4. Nutrient agar medium	26
	Med.5. Nutrient glucose agar medium	26
	Med.6. Starch nitrate agar medium	27
	Med.7. Modified Mandel medium	27
	Med.8. Basal medium (1)	28
	Med.9. Basal medium (2)	28
	Med. 10. Yeast malt (YM) medium	29
	Med.11. Reference medium for	
	bioethanol production	29
	3.2. Methods	30
	3.2.1. Preparation of agricultural waste	30
	3.2.2. Isolation of microorganisms	30
	3.2.3. Standard inoculum	30
	3.2.4. Qualitative determination of lignocellulolytic enzymes	
	activity	31
	3.2.5. Biodegrading efficiency of agro- wastes as a carbon	
	source	32
	3.2.6. Detection of fungal toxin production	32
	3.2.7. Biodegrading efficiency of agro- wastes as a nitrogen	
	source	33

	3.2.8. Effect of substrate concentrations of agro-wastes on	
	enzyme activity	33
	3.2.8.1. Agro-wastes concentrations as a nitrogen source	33
	3.2.8.2. Agro-wastes concentrations as a carbon source	34
	3.2.9. Morphological and molecular identification of the	
	selected isolates	34
	3.2.9.1. Fungal culture identification	34
	3.2.9.2. Actinomycetes identification	35
	3.2.10. Quantitative determination of lignocellulolytic	
	enzymes	35
	3.2.10.1. In fermentation process	35
	3.2.10.2. Assay of cellulolytic enzymes	36
	3.2.10.3. Xylanase assay	37
	3.2.10.4. laccase assay	37
	3.2.11. Sugars assay using High-performance liquid	
	chromatography (HPLC)	38
	3.2.12. Bioethanol production by yeast strain using	
	fermentable broth	38
	3.2.12.1. Standard inoculum	38
	3.2.12.2. Bioethanol efficiency assay	38
	3.2.12.3. Different treatments of the fermentable broth	39
	3.2.12.4. Optimization of bioethanol production	39
	3.2.12.5. Yeast Growth curve	39
	3.2.13. Analytical technique	40
	3.2.13.1. Assay of soluble protein content	40
	3.2.13.2. Assay of soluble sugar	40
	3.2.13.3. Bioethanol determination	41
	3.2.14. Calculated parameters for bioethanol production	41
	3.2.15. Statistical analyses	42
4.	RESULTS AND DISCUSSION	43
	4.1. Chemical composition and fiber content of agro-industrial	
	wastes	43

	4.2. Isolation of microorganisms associated with	
	lignocellulosic wastes	45
	4.3. Assessment of lignocellulolytic enzymes activity	47
	4.4. Biodegrading efficiency of agro-wastes as a carbon	
	source	53
	4.5. Detection of mycotoxin production	59
	4.6. Effect of agro-industrial waste as a nitrogen source	62
	4.7. Effect of different concentrations of agricultural wastes	
	as nitrogen source on bioconversion of agricultural	
	waste	68
	4.8. Effect of different concentrations of agricultural wastes	
	as carbon source on bioconversion of agricultural	
	waste	74
	4.9. Identification of the most efficient culture for enzyme	
	activity	80
	4.9.1. Identification of fungal culture	80
	4.9.2. Identification of actinomycetes culture	81
	4.10. Profile of enzyme activity in fermented broth	83
	4.11. Characterization of sugars content in fermentable	
	broth using HPLC	94
	4.12. Bioethanol production	99
	4.12.1. Evaluation of yeast culture and fermentable broth	
	for bioethanol production	99
	4.12.2. Effect of sterilization process of fermentable broth	
	on bioethanol production	103
	4.12.3. Optimization of bioethanol production	105
	4.12.3.1. Fermentable broth amended with salt solution	105
	4.12.4. Biological activity of bioethanol production	107
5.	SUMMARY	114
6.	REFERENCES	124
	ARABIC SUMMARY	

LIST OF TABLES

Гable No.	Title	Page
1 2	Chemical composition of collected agricultural wastes Cellulose, hemicellulose and lignin contents in tested agricultural wastes	44
3	Qualitative assay of enzyme activities of fungal isolates represented as hydrolysis capacity for cellulase and xylanase and growth dimeter for laccase incubated at 28°C for 7 days.	48
4	Qualitative assay of enzyme activities of bacterial isolates represented as hydrolysis capacity for cellulase and xylanase and growth dimeter for laccase incubated at 30°C for 4 days.	51
5	Qualitative assay of enzyme activities of actinomycetes isolates represented as hydrolysis capacity for cellulase and xylanase and growth dimeter for laccase incubated at 30°C for 4 days.	52
6	The soluble sugar and protein (mg/ml) produced by bioconversion of agricultural waste using fungal isolates under shaking conditions incubated at 28°C for 15 days.	55
7	The soluble sugar and protein (mg/ml) produced by bioconversion of agricultural waste using bacterial isolates under shaking conditions incubated at 30°C for 15 days.	56
8	The soluble sugar and protein (mg/ml) produced by bioconversion of agricultural waste using	58

Гable No.	Title	Page
	actinomycetes isolates under shaking conditions incubated at 30°C for 15 days.	
9	Qualitative assay of produced mycotoxin by selected fungal isolates on corn plant after 25 day of cultivation	60
10	Chemical composition of soybean okara and sesame husk	62
11	Effect of different agro-wastes as nitrogen sources (0.1 N%) on bioconversion of lignocellulatic wastes using fungal isolates under shaking conditions incubated at 28°C for 15 days.	63
12	Effect of different agro-wastes as nitrogen sources (0.1%N) on bioconversion of lignocellulatic wastes using bacterial isolates under shaking conditions incubated at 30°C for 15 days.	64
13	Effect of different agro-wastes as nitrogen sources (0.1%N) on bioconversion of lignocellulatic wastes using actinomycetes isolates under shaking conditions incubated at 30°C for 15 days.	67
14	Effect of different carbon concentrations using agricultural wastes on bioconversion of agricultural wastes using fungal isolates under shaking conditions at 28°C for 15 day	
15	Effect of different carbon concentrations using	75
	agricultural wastes on bioconversion of agricultural	77

Table	Title	Page
No.		
	waste using bacterial isolate under shaking conditions at 30°C for 15 day	
16	Effect of different carbon concentrations using agricultural wastes on bioconversion of agricultural waste using actinomycetes isolates under shaking conditions at 30°C for 15 day	
		79
17	Enzymes activity (U/ml) and soluble sugar (mg/ml) of <i>Aspergillus niger</i> (F24) grown on basal medium supplemented by the optimal concentration of nitrogen and carbon source under shaking conditions at 28°C for 16 day	85
18	Bioconversion of sugar beet pulp and corn cobs	63
10	amended with organic nitrogen using <i>Aspergillus niger</i> (F24) under shaking conditions incubated at 28°C for 16 days.	
		89
19	Enzymes activity (U/ml) and soluble sugar (mg/ml)of <i>Streptomyces cellulose</i> A25 grown on basal medium supplemented by the optimal concentration of nitrogen and carbon source under shaking conditions at 30°C for 16 day	
	101 10 day	91
20	Bioconversion of sugar beet pulp and corn cobs amended with organic nitrogen using <i>Streptomyces cellulose</i> (A25) under shaking conditions incubated at 30°C for 16 days.	

Table	Title	Page
No.		
21	Content of reducing sugars in fermented broth produced by <i>Aspergillus niger</i> (F24) grown on agricultural wastes under shaking conditions incubated at 28°C for 16 days.	95
22	Content of reducing sugars in fermented broth produced by <i>Streptomyces cellulosae</i> (A25) grown on agricultural wastes under shaking conditions incubated at 30°C for 16 days.	
		97
23	Production of bioethanol by <i>S. Cerevisiae</i> (AUMC 14720) growing on different treatments of the fermentable broth produced from bioconversion of	
	agricultural waste	104
24	Production of bioethanol by <i>S. Cerevisiae</i> (AUMC 14720) growing on autoclaved fermentable broth amended with salt solution under static conditions at 30°C for 4 day	
		106
25	Bioethanol production of <i>S. cerevisiae</i> (AUMC 14720) after adding the salts to sterilized fermentable broth (Sugar beet wastes with soybean okara) produced by <i>Aspergillus niger</i> (F24)	
		109
26	Bioethanol production parameters by <i>S. Cerevisiae</i> (AUMC 14720) after adding the salts to fermentable broth (Sugar beet wastes with soybean okara) sterilization by autoclave produced by <i>Streptomyces</i>	
	cellulosae (A25)	112