

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / مني مغربي أحمد

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

1992

1992

ملاحظات: لا يوجد

Evaluation of Ophthalmic Adverse Effects of Hydroxychloroquine in Pediatric Patients with Rheumatologic Diseases

Thesis

Submitted for Partial Fulfillment of a Master Degree in Pediatrics

By

Rou'ya Ahmad Mohammad Gah Al-Rassoul

MB.B.Ch (2011)
Faculty of Medicine-Ain Shams University

Supervisors

Prof. Elham Mohammad Hossny

Professor of Pediatrics
Pediatric Allergy and Immunology Unit
Faculty of Medicine-Ain Shams University

Dr. Mona Kamal Abdel Latif

Assistant Professor of Ophthalmology Faculty of Medicine-Ain Shams University

Dr. Nesrine Mohammad Radwan

Lecturer of Pediatrics
Pediatric Allergy and Immunology Unit
Faculty of Medicine-Ain Shams University

Faculty of Medicine Ain Shams University 2019

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Elham Mohammad Hossny**, Professor of Pediatrics, Pediatric Allergy and Immunology Unit, Faculty of Medicine-Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am deeply thankful to **Dr. Mona Kamal Abdel**Latif, Assistant Professor of Ophthalmology Faculty of

Medicine-Ain Shams University, for her great help, active

participation and guidance.

I am also delighted to express my deepest gratitude and thanks to **Dr. Mesrine Mohammad Radwan**, Lecturer of Pediatrics, Pediatric Allergy and Immunology Unit, Faculty of Medicine-Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

Rou'ya Ahmad

Dedication

Words can never express my sincere thanks to My Family, My Loving Husband and My Adorable Daughter (Ahd) for their generous emotional support and continuous encouragement, which brought the best out of me. I owe them all every achievement throughout my life.

I would like to express my everlasting gratitude to all My Professors, Colleagues and Friends, so many of them influenced, encouraged and inspired me throughout the years. I wish them the best of all.

I would like also to thank the **Patients** who agreed willingly to be part of my study and without them; I would not have been able to accomplish this work.

Eable of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	iv
Introduction and Aim of the Work	1
Review of Literature	
Hydroxychloroquine	3
Screening for Ophthalmic Adverse Effects of Hydroxychloroquine	13
Subjects and Methods	19
Results	27
Discussion	48
Recommendations	53
Summary	54
References	56
Arabic Summary	

List of Abbreviations

Abb.	Full term
4AQs	. 4 aminoquinolines
AUC	. Area under curve
AVF	. Automated visual field
<i>BDCQ</i>	$.\ Bis desethy lhydroxychlor oquine$
<i>CMT</i>	. Central macular thickness
DCQ	. Desethylchloroquine
DMARDs	. Disease-modifying antirheumatic drugs
FA	. Fluorescein angiography
HCQ	. Hydroxychloroquine sulphate
HVF	. Humphrey visual field
<i>IQR</i>	. Inter-quartile range
IS/OS	. Inner segment/outer segment
<i>JDM</i>	. Juvenile dermatomyositis
mfERG	. Multifocal electroretinography
<i>NPV</i>	. negative predictive value
OCT	. Optical Coherence Tomography
<i>OCT-A</i>	. OCT angiography
<i>PBMCs</i>	. Peripheral blood mononuclear cells
<i>PPV</i>	. Positive predictive value
<i>RNFL</i>	. Retinal nerve fiber layer
<i>ROC</i>	. Receiver operating characteristic curve
<i>RPE</i>	. Retinal pigment epithelium
<i>SD-OCT</i>	$.\ Spectral\ -domain\ optical\ coherence\ tomography$
<i>SPSS</i>	. Statistical Package for Social Science
TCR	. T cell receptor
TLRs	. Toll-like receptors

List of Tables

Table No.	Title	Page No.
Table (1): Table (2):	Gender of patients and controls group.	patients
Table (3):	Duration and cumulative dose therapy.	_
Table (4):	Central 10-2 visual field test of patients	
Table (5):	OCT results in patients and control	s 31
Table (6):	Retinal thickness assessment by Oo studied sample	
Table (7):	Cumulative dose and duration therapy in the studied patients	•
Table (8):	Gender difference in the studied san	mple 33
Table (9):	Age and anthropometric measurement among the studied sample	
Table (10):	Best corrected visual acuity assess the studied sample	
Table (11):	Comparison between patients and group regarding visual field test res	
Table (12):	Variation of retinal thickness ass OCT among the studied sample	v
Table (13):	Relation between gender and vis defects in the SLE patients.	
Table (14):	Relation between age and anthrodata and the presence of visual field in the SLE patients.	d defects
Table (15):	Influence of HCQ intake duration visual field defects in the SLE patie	

List of Cables Cont...

Table No.	Title	Page No.
Table (16):	Influence of the cumulative dose of the visual field defects in the SLE	•
Table (17):	Relation between visual acuity defects in the SLE patients	
Table (18):	Relation between OCT assessr visual field defects among the SLE	
Table (19):	OCT examination results in SLE pa normal visual field vs the control group	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Chloroquine and hydroxychloroqu	
Figure (2):	Intraocular pressure (IOP) measure	ement 22
Figure (3):	Dilated fundus examination usilamp biomicroscopy	_
Figure (4):	Central 10-2 visual field testing	25
Figure (5):	OCT examination	26
Figure (6):	Visual field examination resupatients using central 10-2 visual humphrey visual field test	field by
Figure (7):	Visual field affection of right patients.	-
Figure (8):	Visual field affection of left eye of p	oatients 31
Figure (9):	Visual field examination of both the SLE patients	•
Figure (10):	Receiver operating characteristic curve for prediction differentiations patients and control group in riparameters	between ght eye
Figure (11):	Receiver operating characteristic (ROC) for prediction different between patients and controls gleft eye parameters	tiations roup in
Figure (12):	Receiver operating characteristic (ROC) for prediction different between patients with affected thickness (n. 3) and patients retinal affection (n. 42) regarding examination (CMT of both eyes)	tiations retinal without ng OCT45
Figure (13):	Normal central 10-2 visual field tes	sting 46

List of Figures Cont...

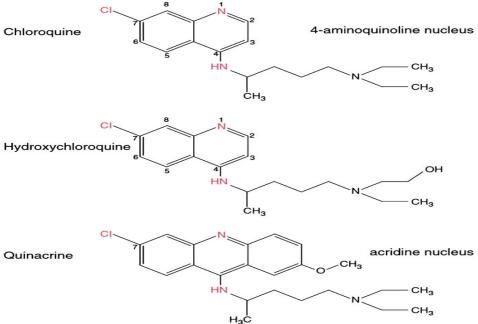
Fig. No.	Title	Page No.
Figure (14):	Central field defect in central 1 field testing.	
Figure (15):	Normal macula by optical tomography (OCT) examination.	
Figure (16):	Central macular changes is coherence tomography (OCT) ex	-

INTRODUCTION AND

Utaneous manifestations in pediatric rheumatological diseases are often a prominent or the sole features for some of them as in lupus erythematosus, dermatomyositis, and rheumatoid arthritis (Clarke and Werth, 2010). Treatment of such condition includes topical therapy as steroids and Calcineurin inhibitors and systemic therapy (biological and non-biological drugs). Systemic therapy is used when the skin lesions are widespread, scarring, or ineffective topical therapies. The most important and commonly used is oral hydroxychloroquine (Tripp and Maibach, 2006; Zhneg et al., 2017).

AIM OF THE WORK

Hydroxychloroquine sulphate (HCQ) is mainly used in treating and preventing malaria, and recently it has new applications in diabetes mellitus, heart disease and adjunct cancer therapy (Marmor, et al., 2011). HCQ has an immunomodulatory effect on different proinflammatory cytokines as IL-6 (Wozniacka et al., 2008; Da Silva et al., 2013) through its action on Toll-like receptors (Kyburz et al., 2006; Da Silva et al., 2013). It blocks UV light in cutaneous reactions, interferes with the antigen presentation and lysosomal acidification (Ohkuma et al., 1978; Da Silva et al., 2013). Its major side effect is reversible or irreversible central visual loss (Tzekov, 2007) that is usually silent in early stages (Geamănu, et al., 2014). Accordingly, early diagnosis of toxicity and evaluation of the visual function are important


(Tzekov, 2007). Increase in the incidence of such toxicity depends on the amount of daily dose, duration of intake, concomitant liver or renal disorder and the presence of an underlying initial maculopathy (Geamănu, et al., 2014). Screening guidelines states that all patients should have a baseline ophthalmologic examination within the first year of starting the drug to document any complicating ocular conditions and to establish a record of the fundus appearance and functional status and a follow up should be done after 5 years or earlier depending on presence or absence of any of the risk factors. This should be done using automated visual fields (AVF) and Spectral domain optical coherence tomography (SD-OCT) for routine primary screening and multifocal electroretinography (mfERG). Fields potentially are more sensitive, but are subjective; while SD OCT is objective, highly specific, and generally sensitive for levels of damage (Marmora et al., 2016). mfERG had the greatest proportion of positive test results, with a sensitivity and specificity of 90% and 52%, respectively (Tsang et al., 2015).

Aim of the Work

Our study was aimed at screening for the retinal damage resulting from HCQ therapy in patients in the Pediatric age group with various rheumatologic diseases and assessing the diagnostic accuracy of the investigational methods employed.

HYDROXYCHLOROQUINE

Chloroquine was discovered in 1939 and since the 1950s, Hydroxychloroquine sulphate (HCQ) is mainly used in treating and preventing malaria (Yam et al., 2006; Chang et al., 2011; Yusuf et al., 2017) then people started to use it in treating rheumatologiacl diseases as SLE since the last century. Initially, they were used because of their efficacy on the disease's skin manifestations (Casian et al., 2018; Spinelli et al., 2018). Recently it is used in diabetes mellitus, heart disease and adjunct cancer therapy (Marmor et al., 2011).

Figure (1): Chloroquine and hydroxychloroquine are 4-aminoquinolines. Quinacrine has a side chain similar to that in chloroquine, but is based on an acridine nucleus (Browning et al., 2014).

In a way to understand what Hydroxychloroquine from all sides, we will start with the chemistry of this drug. The parent molecule for the antimalarials is quinine. Both chloroquine (C 18 H 26 ClN 3) and hydroxychloroquine (C 18 H 26 ClN 3 O) are alkylated 4 aminoquinolines (4AQs). Chloroquine is 7-chloro-4(methylbutylamino) 4-diethylamino-1quinoline hydroxychloroquine is its hydroxyl derivative. Chloroquine and hydroxychloroquine have molecular weights of 320 and 336, respectively. Both chloroquine and hydroxychloroquine are amphiphilic weak bases based on two fused aromatic rings having conjugated double bonds, the 4-aminoquinoline nucleus. Both drugs cross cell membranes well. Hydroxychloroquine is more polar, less lipophilic, and has more difficulty diffusing across cell membranes. The 4AQs lack the third benzene ring that is part of the acridine nucleus of quinacrine (Browning et al., 2014).

The pharmacokinetics of chloroquine and hydroxychloroquine are similar. The peak plasma concentration after an oral dose of chloroquine is 3–12 h. Thirty three to 70 % of the drug in plasma is proteinbound. There is effect of ethnicity on 4AQs pharmacokinetics but not differ to a clinically important extent between black and white patients. The average melanin content of a black person is estimated to be 1 g and for a white person is estimated to be 250 mg. Melanin interaction with 4AQs is complex which prevents formation of lamellar bodies until its binding capacity is exceeded. Chloroquine accumulates in the uveal tract of pigmented animals, but not albino animals, but