

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

EVALUATION OF LEFT VENTRICULAR DIASTOLIC FUNCTION USING A TISSUE-DOPPLER IMAGING BASED ALGORITHM ACCORDING TO 2016 ASE/EACVI GUIDELINES IN PATIENTS WITH DECOMPENSATED LIVER CIRRHOSIS: A PROSPECTIVE OBSERVATIONAL STUDY

Thesis

Submitted for partial fulfillment of Master Degree in Intensive Care

Presented by

Eslam Mohammed Maher Abd EL Moaz Basha Attallah

M.B.B.Ch, Faculty of Medicine, Menoufia University

Under supervision of

Prof. Dr. Mohamed Hossam Shokeir

Professor of Anaesthesiology, Intensive care and Pain medicine Faculty of Medicine, Ain Shams University

Prof. Dr. Ashraf Abdelkhalek Barakat

Professor of Intensive care
Theodor Bilharz Research Institute

Prof. Dr. Amna Ahmed Metwaly

Professor of Intensive care
Theodor Bilharz Research Institute

Prof. Dr. Hanaa Abd allah El Gendy

Professor of Anaesthesiology, Intensive care and Pain medicine Faculty of Medicine, Ain Shams University

Dr. Mohamed Moien Mohamed Elsaid

Lecturer of Anaesthesiology, Intensive care and Pain medicine Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2022

تقييم الوظيفة الانبساطية البطينية اليسرى باستخدام خوارزمية تعتمد على صور الانسجة بالدوبلر وفقًا لإرشادات الجمعية الأمريكية لتخطيط صدى القلب والرابطة الأوروبية لتصوير القلب والأوعية الدموية ٢٠١٦ في المرضى الذين يعانون من تليف الكبد اللا تعويضى:

حويصي. دراسة رصدية مستقبلية رسالة

توطئة للحصول على درجة الماجستير في العناية المركزة مقدمة من

الطبيبة / إسلام محمد ماهر عبدالمعز باشا عطاالله بكالوريوس الطب و الجراحة تحت إشراف

أد/ محمد حسام شقير

أستاذ التخدير والعناية المركزة وطب الألم كلية الطب- جامعة عين شمس

أد/ أشرف عبدالخالق بركات

أستاذ الرعاية المركزة

معهد ثيودور بلهارس للأبحاث

أد/ أمنه أحمد متولي

أستاذ الرعاية المركزة معهد ثيودور بلهارس للأبحاث

أد/ هناء عبد الله الجندي

أستاذ التخدير والعناية المركزة وطب الألم كلية الطب- جامعة عين شمس

د/ محمد معين محمد السعيد

مدرس التخدير والعناية المركزة وطب الألم كلية الطب- جامعة عين شمس كلية الطب جامعة عين شمس

First and foremost, I feel always indebted to **Allah** the most kind and most merciful and we owe to him for his care and guidance in every step in our life. Countless people supported my effort on this thesis, this project would not have been possible without them. My supervisors have been an ideal teachers and mentors, offering advice and encouragement with a perfect blend of insight and humor. I'm proud of, and grateful for my time working with them

I wish to express my great attitude and thanks to **Prof. Mohamed Hossam Shokeir** Professor of Anaesthia and Intensive Care , Faculty of medicine Ain Shams University for accepting to supervise this work, for his valunable supervision and gyiding comments, he generously devoted much of his precious time and provided unlimited in depth guidance, I sincerely appreciate all the encouragement and support given by him.

Great thanks to **Prof.** Ashraf Abdelkhalek Barakat Professor of Intensive care Theodor Bilharz Research Institute, I have benefited greatly from his wealth of knowledge and meticulous editing. I am extremely grateful that he took me on as a student and **Prof.** Amna Ahmed Metwaly Professor of Intensive care Theodor Bilharz Research Institute, her encouraging words and thoughtful, detailed feedback have been very important to me She is the true definition of a leader and the ultimate role model and **Prof.** Hanaa Abd allah El Gendy Professor of Anesthesiology, Intensive care Faculty of medicine, Ain Shams University for her great effort, support and guiding advices, my sincere thanks goes for her; her immense knowledge and plentiful experience have encouraged me in all the time of my research.

Iam profound grateful to **Dr. Mohamed Moien Mohamed Elsaid** Lecturer of Anaesthesia and Intensive Care, Faculty of medicine, Ain Shams University, for his kind and close supervion, patience, support, scientific guidance and constant advice with a perfect blend of insight and humor, and his trust in my performance and my work.

Thanks to all the patients who were included in this study and operated in this esearch. Special thanks to my supportive and helpful staff **Dr.Fatma Mohamed Naser** and **Dr.Mohammed Makram Hamam**.

Finally my family; they deserves endless gratitude; to them, I give everything, including this. Thanks to my great parents, brother, sister, grandfather, grandmother and numerous friends who endured this long process with me, always offering support and love that kept me motivated and confident.

CONTENTS

Title	Page
• List of Abbreviations	I
• List of Table	III
List of Figures	V
• Introduction	1
Aim of the work	4
Review of literature	
Chapter (1): Liver cirrhosis	5
Chapter (2): Cirrhotic Cardiomyopathy	18
Chapter (3): New MELD score known sodium MELD score	
Patients And Meathods	42
• Results	50
• Discussion	77
• Conclusion	87
• Recommendations	88
• Summary	889
References	93
الملخص العربي	116

LIST OF ABBREVIATIONS

Abb.	Full term
AASLD	American Association for the Study of Liver Diseases
AFP	Alph feto protein
AKI	Acute kidney injury
ALD	Alcoholic liver disease
ALT	Alanine transaminase
ASE	American Society of Echocardiography
AST	Aspartate aminotransferase
\mathbf{AV}	Aortic valve
BSA	Body surface area
CCM	Cirrhotic Cardiomyopathy
CDC	Centers for Disease Control and Prevention
CT	Computerized tomography
CTP	Child Turcotte Pugh
D.Bilirubin	Direct bilirubin
DD	Diastolic Dysfunction
EACVI	European Association of Cardiovascular Imaging
EASL	European Association for the Study of the Liver
EF	Ejection fraction
ESLD	End-stage liver disease
GEVs	Gastroesophagial varices
GI	Gastrointestinal
НВ	Hemoglobin
HBV	Hepatitis B Virus
HCC	Hepatocellular carcinoma
HCV	Hepatitis C Virus
HE	Hepatic encephalopathy
HF	Heart failure
HRS	Hepatorenal Syndrome
HSCs	Hepatic stellate cells
IL-6	Interleukin 6
INR	International normalized ratio
IVR	Isovolumic relaxation
IVRT	Isovolumetric relaxation time
LA	Left atrium
LAVI	Left atrial volume indexed
LC	Liver Cirrhosis

& List of Abbreviations

Abb.	Full term
LT	Liver transplantation
LV	Left ventricle
LVDD	Left ventricular diastolic dysfunction
LVEF	Left ventricular ejection fraction
MELD	Model For End-Stage Liver Disease
MRI	Magnetic resonance imaging
MV	Mitral valve
Na+	Sodium
NAFLD	Nonalcoholic fatty liver disease
NASH	Nonalcoholic steatohepatitis
NCHS	National Center for Health Statistics
PLT	Platelet
PND	Paroxysmal nocturnal dyspnea
PPIs	Proton pump inhibitors
PWD	Pulsed Wave Doppler
SBP	Spontaneous Bacterial Peritonitis
sCr	Serum creatinine
SVR	Systemic vascular resistance
T.Bilirubin	Total bilirubin
TACE	Transarterial chemoembolization
TDI	Tissue Doppler Imaging
TGF-β1	Transforming growth factor beta 1
TIPSS	Trans jugular intrahepatic portosystemic shunt
TLC	Total leukocyte count
TNF	Tumour necrosis factor
TR	Tricuspid regurgitation
TRpV	Tricuspid regurgitation peak velocity
UNOS	United Network for Organ Sharing
VH	Variceal hemorrhage

LIST OF TABLES

Table No	Subjects	Page
Table (1):	West Haven criteria for grading hepatic	12
	encephalopathy.	
Table (2):	MELD score estimated 90 day Mortality	52
Table (3):	Demographic data (sex and age) distribution	
	among study group (n=90)	50
Table (4):	Laboratory data descriptive among study	
()	group (n=90)	52
Table (5):	New MELD score descriptive among study	
Table (5).	group (n=90).	53
T 11 (6)		55
Table (6):	Echo-cardiography descriptive among study	
	group (n=90).	54
Table (7):	Grading of left ventricular diastolic	
	dysfunction distribution using Tissue-	
	Doppler Imaging (TDI) based algorithm	
	according to 2016 ASE/EACVI guidelines	
	among study group (n=90)	55
Table (8):	Association between left ventricular diastolic	
. ,	dysfunction according to demographic data	
	regarding age and sex.	57
Table (9):	Association between left ventricular diastolic	
1auk (9).	dysfunction according to laboratory data	50
		39
Table (10):		
	dysfunction according to New MELD score	62
Table (11):	Association between left ventricular diastolic	
	dysfunction according to echocardiography	64

≰List of Table

Table No	Subjects Page
Table (12):	Comparison between normal and abnormal left ventriular diastolic function according to demographic data
Table (13):	Comparison between normal and abnormal left ventricular diastolic function according to laboratory data
Table (14):	Comparison between normal and abnormal left ventricular diastolic function according to New MELD score. 71
Table (15):	Comparison between normal and abnormal left ventricular diastolic function according to echocardio graphy
Table (16):	Correlation between New MELD score and grading of left ventricular diastolic dysfunction, using Spearman's rank correlation coefficient (rs)

LIST OF FIGURES

Figure No	Subjects	Page
Figure (1):	Schematic representation of the concept of inter-organ trafficking of ammonia under normal physiological conditions compared to a patient with cirrhosis and HE	13
Figure (2):	Summary algorithm of the diagnosis and treatment of the Hepatorenal Syndrome	16
Figure (3):	Stages of diastole	19
Figure (4):	Top, Schematic diagram of mitral inflow and mitral medial annulus velocities from normal to progressive stages of diastolic dysfunction.	25
E (5).	•	20
Figure (5):	Left atrial volume in apical 2 chamber view	29
Figure (6):	MV E, A, E/A ratio by pulsed wave	28
Figure (7):	Picture showing tricuspid regurgitation velocity	28
Figure (8):	Picture showing TDI over MV in apical 4 chamber view with (E') measured	29
Figure (9):	Algorithm showing grading of left ventricular diastolic dysfunction (LVDD) according to guidelines of the American Society of Echocardiography (ASE) and the European Association of Cardiovascular Imaging (EACVI) 2016	30
E (10)-		0
Figure (10):	Grading of LVDD using M-mode	
	technique and TDI according to	20
	ASE/EACVI 2016 guidelines	30

Figure No	SubjectsPage
Figure (11):	Picture showing MV E, A, E/A ration using pulsed wave E/A ratio > 246
Figure (12):	Picture showing decreased E' velocity at the mitral valve lateral annulus by TDI49
Figure (13):	Picture showing TR velocity of value 2.6248
Figure (14):	Picture showing LA volume in apical 2 chamber view
Figure (15):	Pie chart sex distribution among study group
Figure (16):	Histogram New MELD score distribution among study group
Figure (17):Pi	e chart left ventricular diastolic dysfunction distribution among study group
Figure (18):	Pie chart grading of left ventricular diastolic dysfunction distribution among study group
Figure (19):	Association between diastolic dysfunction according to age
Figure (20):	Association between diastolic dysfunction according to sex
Figure (21):	Association between left ventricular diastolic dysfunction according to ALT and AST60
Figure (22):	Association between left ventricular diastolic dysfunction according to T.bilirubin, D.bilirubin, INR and Creatinine

Figure No	SubjectsPage
Figure (23):	Association between left ventricular diastolic dysfunction according to Platelet and Na+
Figure (24):	Box plot between grading left ventricular diastolic dysfunction according to New MELD score. 63
Figure (25):	Association between left ventricular diastolic dysfunction according to MV E(m/s), MV E/A ratio and TR velocity (m/s).
Figure (26):	Association between left ventriular diastolic dysfunction according to MV E/E' ratio
Figure (27):	Association between diastolic dysfunction according to LAVI (LA volume/ BSA) "ml/m"
Figure (28):	Comparison between normal and abnormal left ventricular diastolic function according to age
Figure (29):	Comparison between normal and abnormal left ventricular diastolic function according to sex
Figure (30):	Comparison between normal and abnormal left ventricular diastolic function groups according to ALT and AST

Figure No	SubjectsPage
Figure (31):	Comparison between normal and abnormal left ventricular diastolic function groups according to Na+69
Figure (32):	Comparison between normal and abnormal left ventricular diastolic function groups according to T.bilirubin, D.bilirubin, INR and creatinine
Figure (33):	Box plot between normal and abnormal left ventricular diastolic function according to New MELD score
Figure (34):	Comparison between normal and abnormal left ventricular diastolic function groups according to MV E(m/s), MV E/A ratio and TR velocity (m/s)
Figure (35):	Comparison between normal and abnormal left ventricular diastolic function groups according to MV E/E' ratio
Figure (36):	Comparison between normal and abnormal left ventricular diastolic function groups according to LAVI (LA volume/ BSA) "ml/m"
Figure (37):	Scatter plot between New MELD score and grading of left ventricular diastolic dysfunction among study group

INTRODUCTION

Presence of liver cirrhosis is diagnosed based on the combination of characteristic clinical, laboratory, radiological findings or via histological findings, if available (*Strnad et al.*, 2017).

Regardless of the reason for admission to ICU, cirrhosis adds complexity and a poor prognosis to the critically ill patient, although the prognosis has improved in recent years (*Hernaez et al.*, 2017).

Liver failure indicates severe liver damage and can be caused by a variety of factors. It results in a severe disorder or decompensation in functions, such as synthesis, detoxification, excretion, and bioconversion, leading to a clinical syndrome which can include coagulopathy, jaundice, hepatic encephalopathy and ascites. The severity of liver failure is correlated with high mortality and thus it is important to identify factors that will help predict prognosis in these patients (*Sarin et al.*, 2014).

Cirrhotic cardiomyopathy has been described as a condition characterized by impaired contractile response to stress, diastolic dysfunction and electro- physiological abnormalities, in the absence of known cardiac disease (Sampaio et al., 2013).

The most common cardiac abnormality that occurs among cirrhotic patients is left ventricular diastolic dysfunction (LVDD) related to the development of myocardial fibrosis, hypertrophy and subendothelial edema. Diastolic dysfunction occurs when the passive elastic traits of the myocardium are reduced due to the increased myocardial mass and changes in the extracellular collagen (*Stundiene et al.*, 2019):

According to different studies, the prevalence of LVDD in cirrhotic patients is ranging from 25.7% to as high as 81.4%. Evidence suggests that patients with cirrhosis display primarily LVDD with normal systolic function at rest. Diastolic dysfunction may progress to systolic dysfunction, although this has not been directly shown in cirrhotic patients. In several studies; severity of LVDD correlated with degree the of liver failure. of Furthermore, the rate LVDD higher was decompensated cirrhosis compared with compensated cirrhosis. On the contrary, several studies have not identified any association between severity of liver disease and LVDD (Stundiene et al., 2019).

Therefore, an attentive analysis of already performed studies on LVDD causes and prevalence in cirrhotic patients as well as LVDD complication influence on patients' quality of life and their survival is needed to develop appropriate treatment strategy. It is important to assess cardiac changes especially in those patients, who are