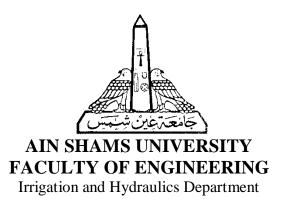


بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / مني مغربي أحمد


بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

1992

1992

ملاحظات: لا يوجد

Management Plan for Hydraulic Structures

A Thesis Submitted in Partial Fulfillment of the **Ph.D. Degree of Science in Civil Engineering**Irrigation and Hydraulics Department
Ain Shams University

By:

Noran Mohamed Abdel Azim Abdel Latif

Supervised By

Prof. Dr. Mahmoud Samy Abdelsalam

Prof. of Hydraulics, Faculty of Engineering Ain Shams University, Cairo, Egypt

Dr. Khaled Mohsen Toubar

Consultant for irrigation department, Ministry of Water Resources and Irrigation, Cairo, Egypt

Cairo 2020

MANAGEMENT PLAN FOR HYDRAULIC STRUCTURES

Noran Mohamed Abdel Azim Abdel Latif

M.Sc. in Civil Engineering, Ain Shams University, 2012 Ph.D Student, Irrigation and Hydraulics Department Faculty of Engineering, Ain Shams University

Examiners Committee

Name and Affiliation	Signature
Prof. Dr. Anas Mohamed Abol Ela Elmola	
Prof. Irrigation and Hydraulics Department, Azhar University	
Prof. Dr. Aly Mohamed Talaat	
Prof. Irrigation and Hydraulics Department, Ain Shams University	
Prof. Dr. Mahmoud Sami Abdelsallam	
Prof. Irrigation and Hydraulics Department, Ain Shams University	
D.	/2020
Date:	/ /2020

STATEMENT

This thesis is submitted to the Irrigation and Hydraulics Department,

Faculty of Engineering, Ain Shams University in the partial fulfillment of the

requirements for the Ph.D. Degree of Science in Civil Engineering.

The work in this thesis was carried out in the Irrigation and Hydraulics

Department, Faculty of Engineering, Ain Shams University from January 2014

to February 2020.

No part of this thesis has been submitted for a degree or a qualification at

any other university or institution.

Date:

/ 2020

Signature:

Name: Noran Mohamed Abdel Azim Abdel Latif

RESEARCHER DATA

Name: Noran Mohamed Abdel Azim Abdel Latif

Date of Birth: March 29th, 1984

Place of Birth: Cairo, Egypt

Academic Degree: M.Sc. in Civil Engineering

Field of specialization: Irrigation and Hydraulics

University issued the degree: Ain Shams University

Date of issued degree: 2012

Current job: Ph.D student

THESIS SUMMARY

Egypt is located in an extreme aridity belt, with average annual rainfall of less than 18 mm and population of more than 100 million. The rapid growth of the population and per capita consumption enhances the need to manage well the available water supply trying to fulfill these needs.

In this study, Management Plan (MP) is conducted for water distribution system in Egypt that depends mainly on a complex set of control Hydraulic Structures (HS) along the entire length of the Nile River. 140 control HS were selected for the study. The selected structures vary with respect to size from barrages on the Nile River to small water Mesqa intake regulators.

Different types of data like hydraulic, structural, social and environmental data were collected using different techniques such as aerial and satellite photography, land and bathymetric survey, underwater video filming, etc. Geographic Information System (GIS) package was used to store and handle the huge amount of data collected to decide measures to be taken for system rehabilitation to guarantee best system performance. Decision Support System (DSS) was designed using the SD V2.6.0 software to prioritize the selected 140 structures regarding rehabilitation process. Sensitivity Analysis (SA) was performed to determine the effects of the eight selected criteria on the ranking of the 140 structures under study.

The study resulted in the determination of the remedy measures to be taken for the structures, complete priority list for all the 140 control HS, and the eight effective criteria regarding prioritization of the structures under study. It is hoped to give a new insight to engineers and researchers regarding MP for water distribution systems controlled by HS.

Keywords: Management Plan, Hydraulic Structures, Geographic Information System, Decision Support System, Sensitivity Analysis.

ACKNOWLEDGMENT

First of all, Thanks are due to Allah to whom any success in life is attributed.

I would like to express my deepest gratitude and appreciation to **Prof. Dr.**Mahmoud Samy Abdelsallam, for his help, guidance, useful suggestions, and encouragement throughout this work.

My special thanks are to **Dr. Khaled Mohsen Toubar**, for his kind supervision, comments and stimulating discussion, which are gratefully acknowledged and sincerely appreciated.

Last but not least, I would like to thank my husband and my family for their self-denial and for sparing no effort in encouraging and supporting me continuously throughout my study.

TABLE OF CONTENTS

LIST OF FIG	GURES	i-1
LIST OF PH	OTOS	ii-1
LIST OF TA	BLES	iii-1
LIST OF AB	BREVIATIONS AND SYMBOLS	iv-1
CHAPTER (1	l): INTRODUCTION	
1.1 OVERVIE	W AND PROBLEM STATEMENT	1-1
1.2 THE STUD	Y OBJECTIVES	1-3
1.3 THESIS OF	RGANIZATION	1-3
CHAPTER (2	2): LITERATURE REVIEW	
2.1 HEADING	UP HYDRAULIC STRUCTURES (HS)	2-1
2.1.1 Weirs		2-2
2.1.2 Regula	tors	2-3
2.1.3 Locks		2-4
2.1.3.1	Moveable Lock Chamber	2-6
2.1.3.2	Fixed Lock Chamber	2-6
2.1.3.3	Locks with Different Chamber Position	2-9
2.1.3.4	Locks with Different Gate Types	2-9
2.1.4 Dams		2-9
2.1.4.1	Gravity Dams	2-11
2.1.4.2	Arch Dams	2-12
2.1.4.3	Buttress Dams	2-13
2.1.5 Spillwa	ays Dams	2-14
2.1.6 Examp	oles of Researches on Heading-up Structures	2-17
2.2 ASSET MA	NAGEMENT PLAN	2-22

2.2.1 Definiti	ion of Asset Management Plan (AMP)	2-23
2.2.2 Key Ele	ements of AMP	2-23
2.2.3 Literatu	re Examples of AMP	2-24
2.3 FAILURE C	OF HS AND LEARNT LESSONS	2-31
2.4 DEALING	WITH RISKS OF HS	2-39
2.5 DECISION	SUPPORT SYSTEM (DSS)	2-46
2.5.1 Technic	ques of Developing DSS	2-48
2.5.1.1	Condition Index DSS	2-48
2.5.1.2	Risk Analysis Based DSS	2-49
2.5.1.3	Fuzzy	2-49
2.5.1.4	Sustainability	2-50
2.5.1.5	Classic Multi-Criteria Decision-Making (CMCDM)	2-50
2.5.1.6	AHP (Analytic Hierarchy Process) and ANP	(Analytic
	Network Process)	2-51
2.5.1.7	MIVES, Sensitivity Analysis	2-51
2.5.2 Exampl	les of Applications of DSS	2-52
2.6 IMPORTAN	NCE OF THE PRESENT STUDY	2-59
CHAPTER (3): PRODUCING THE MANAGEMENT PL	AN
3.1 PROBLEM	DEFINITION	3-2
3.2 STEPS OF I	PRODUCING THE MANAGEMENT PLAN	3-5
3.2.1 System 1	Definition	3-5
3.2.2 Data Co	llection and Stratified Random Sampling	3-6
3.2.2.1	Subdivision of the Study System	3-7
3.2.2.2	Stratification	3-7
3.2.2.3	Deciding what data to collect	3-9
3.2.3 Asset Su	ırvey	3-10
3.2.3.1	Asset extent	3-10
3.2.3.2	Asset value	3-11
3.2.3.3	Asset Condition and Serviceability	3-11

3.2.4	The Env	rironmental Report	3-12
3.2.5	S Assessir	ng System Performance	3-14
3.2.6	Manage:	ment Issues	3-15
3.2.7	Building	g The Cost Model	3-17
CHAP	TER (4): DATA COLLECTION	
4.1 TY	PES OF	DATA AND TECHNIQUES	4-2
4.2 SE	LECTIO	N OF DATA COLLECTION TECHNIQUES	4-3
4.2.1	Social a	nd Environmental Investigation	4-4
		Inspection	
4.2.3	Geotecl	hnical and Structural Investigations	4-5
		raphic and Bathymetric Surveys	
4.2.5	Underw	vater Inspection and Dewatering	4-6
4.3 AP	PLICAT	ION OF DATA COLLECTION TECHNIQUES	4-6
4.3.1	Social a	and environmental data	4-7
4.3.2	2 Visual 1	Inspection	4-8
	4.3.2.1	Object	4-8
	4.3.2.2	Technical Data short-list	4-9
	4.3.2.3	Apparent Conditions	4-9
	4.3.2.4	Comments from the in-site personnel	4-11
4.3.3	Geotecl	hnical and Structural Investigations	4-13
4.3.4	l Topogr	raphic and Bathymetric Surveys	4-14
	4.3.4.1	Object	4-14
	4.3.4.2	Sections of the report	4-15
	4.3.4.3	Topographic survey	4-15
	4.3.4.4	The bathymetric survey	4-16
	4.3.4.5	Navigation control	4-17
	4.3.4.6	Dual frequency bathymetry and configuration	4-17
	4.3.4.7	Navigation system	4-18
	4.3.4.8	Water velocity profile	4-18

		4.3.4.9	Water level variation reductions4	-18
		4.3.4.10	Datasets cleaning and bathymetric Interpretation4	-18
		4.3.4.11	Quality control4	-19
۷	1.3.5	Underw	ater Inspection and Dewatering Process4	-20
		4.3.5.1	Underwater inspection and dewatering report contents4	-20
		4.3.5.2	Application in case of BMHR4	-21
4.4	PR	OBLEMS	IN FIELD DATA COLLECTION4	-25
۷	1.4.1	Field Da	ta Collection Method4	-25
۷	1.4.2	Laborato	ry Data Collection Method4	-26
۷	1.4.3	Numeric	al Analysis Method4	-27
۷	1.4.4	Problems	s during Application of Data Collection in The Study4	-28
CH	AP	TER (5)	: DATA HANDLING AND ANALYSIS	
5.1	GE	OGRAPI	HIC INFORMATION SYSTEM (GIS)	5-1
5.2	SY	STEM DI	ESIGN OVERVIEW	5-2
5.3	OB	JECTIVE	E OF THE SYSTEM DESIGN	5-3
5	5.3.1	System A	Architecture Design	5-4
5	5.3.2	Geo-Data	abase Design	5-4
5.4	GE	O-DATAI	BASE DESIGN PHASES	5-7
5	5.4.1	Conceptu	ıal Model Design	5-8
5	5.4.2	Logical	Geo-Database Model Design.	5-8
5	5.4.3	Physical	l Geo-Database Modeling	5-9
5	5.4.4	Detailed	I GISDB Physical Schema5	-10
		5.4.4.1	Social and environmental report DM5	-10
		5.4.4.2	Structure data sheet DM	-24
		5.4.4.3	Structure inspection sheet DM	-24
		5.4.4.4	Structure geotechnical inspection DM5	-24
		5.4.4.5	Topographic and bathymetric survey DM5	-25
		5.4.4.6	Under water and dewatering survey DM5	-26
		5.4.4.7	Structural stability analysis DM5	-26

CH	APTER (6): TH	HE DE	VELOPE	D DECI	SION	SUPPORT
SY	STEM (DS	S)					
6.1	DSS SOFTV	VARE					6-1
Ć	5.1.1 Nature S	Serve VIS	STA			• • • • • • • • • • • • • • • • • • • •	6-3
6	5.1.2 EGADS	S	•••••			•••••	6-3
6	5.1.3 SDSS (S	Spatial De	ecision S	upport Syste	em)	•••••	6-3
6	5.1.4 SD V2.6	5.0	•••••			•••••	6-4
6.2	ANALYTIC	NET	WORK	PROCESS	(ANP)	AND	ANALYTIC
	HIERARCH	IY PROC	CESS (Al	HP)		•••••	6-5
6.3	DEVELOPI	NG THE	DSS US	SING SD V2	.6.0 SOFT	WARE .	6-7
6	5.3.1 Initiating	g purpose	e and obj	ectives		•••••	6-8
6	5.3.2 Identifyi	ing decis	ion-maki	ng criteria		•••••	6-9
6	5.3.3 Identifyi	ing altern	atives (s	tructures)	•••••	•••••	6-9
Ć	5.3.4 Forming	g ANP str	ructure (S	SD model)	•••••	•••••	6-10
	6.3.4.1	The we	ights for	decision-ma	king criteri	a	6-11
	6.3.4.2	Data of	alternati	ves (structui	res)	• • • • • • • • • • • • • • • • • • • •	6-14
	6.3.4.3	Weight	of each	structure reg	arding each	criterio	n6-15
6	5.3.5 Consiste	ency chec	k	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	6-17
6	5.3.6 Results.		•••••	•••••	•••••	•••••	6-20
6	5.3.7 Sensitivi	ity Analy	sis	•••••	•••••	•••••	6-24
6.4	CHECKING	G DSS	RESULT	rs using	CLASSIC	C MUL	TI-CRITERIA
	DECISION-	MAKIN	G CMCI	OM	•••••	•••••	6-33
CH	APTER	(7):	SUMI	MARY,	CONCL	USIO	NS, AND
RE	COMMEN	DATI(ONS				
7.1	SUMMARY	7					7-1
							7-2
							7-3

APPENDIX A: STRUCTURES' DATA SHEET, INSPECTION SHEET AND BATHYMETRIC SURVEYING DATA

APPENDIX B: SENSITIVITY ANALYSIS OUTPUT

APPENDIX C: REFERENCES

LIST OF FIGURES

Figur	e	Page
2-1	Weir Cross Section Shapes	2-3
2-2	Shapes of Weirs in Plan	2-3
2-3	Classification of Regulators	2-5
2-4	Classification of Regulators According to Location	2-5
2-5	Lock chamber moves vertically between the US and DS water l	evels
		2-6
2-6	Work Mechanism of a Sloped Elevator Lock	2-7
2-7	Work Mechanism of a Vertical Elevator Lock	2-7
2-8	Steps of Operation of a Fixed Lock Chamber	2-8
2-9	Classification of Locks According to Layout	2-9
2-10	Mitre Gates Stepped Weir	2-10
2-11	Rolling Gates Stepped Weir	2-10
2-12	Gravity Dams	2-11
2-13	Cross section of High Aswan Dam (HAD)	2-12
2-14	Arch Dams	2-13
2-15	Buttress Dams	2-14
2-16	Gated Ogee Spillway (Sardar Sarovar dam)	2-15
2-17	Shaft and Tunnel Spillway Cross Sections	2-15
2-18	Siphon Spillway Over Dam Body	2-15
2-19	Components of Siphon Spillway Through Dam Body	2-16
2-20	Chute Spillway	2-16
2-21	Side channel spillway	2-16
2-22	Pressure, Velocity, and Streamlines Distributions	2-18
2-23	Illustration of Asset Management System Modules	2-28
2-24	Asset Hierarchy for Classifying Assets	2-29
2-25	Risk Management Process	2-29

Figur	re	Page
2-26	Sediment Excluding Basin	2-30
2-27	Variation of a) discharge, b) water level c) flood velocity with	time
		2-37
2-28	Flow chart for dam failure	2-41
2-29	Risk Management Process	2-41
2-30	The proposed methodology of reliability-based risk assessment	2-46
2-31	Framework for planning and decision-making process	2-54
2-32	Overall architect of the planning support system	2-54
2-33	Calculated economic value of irrigation water for wheat a	at different
	governorates (average 2008–2009)	2-56
2-34	Chart of the MIVES Method	2-57
3-1	Schema of Some Irrigation Control Structures on the River N	lile System
		3-4
4-1	General structure location sketch and satellite image for BMH	2
		4-7
4-2	BMHR longitudinal section and plan drawing	4-12
4-3	Plan and Elevation of BMHR and lock after topographic survey	ying
		4-16
4-4	Bathymetric surveying plan, water surface, and bed contours	4-19
4-5	Bathymetric surveying output for cross sectional bed profile	4-20
5-1	System phases	5-3
5-2	System architecture design process	5-4
5-3	Geo-database elements	5-5
5-4	Example of points, lines and polygons	5-7
5-5	Geo-database design phases	5-7
5-6	Creating a personal geo-database	5-27
5-7	Creating domains	5-27
5-8	Creating new feature class	5-28