

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / مني مغربي أحمد

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

1992

1992

ملاحظات: لا يوجد

EFFECT OF PHAGES ON SOME PHOSPHATE SOLUBLE BACTERIA IN THE SOIL

By

ALAA MOHAMED FATHI EL-SAYED BARAKAT

B.Sc. of Agriculture (Biothenology), Fac. of Agric., Ain Shams Univ., 2011 M.Sc. of Microbiology (Virology), Fac. of Agric., Ain Shams Univ., 2017

A Thesis Submitted in Partial Fulfillment Of The Requirements for The Degree of

in
Agricultural Sciences
(Agricultural Virology)

Department of Agric. Microbiology Faculty of Agriculture Ain Shams University

Approval Sheet

EFFECT OF PHAGES ON SOME PHOSPHATE SOLUBLE BACTERIA IN THE SOIL

By

ALAA MOHAMED FATHI EL-SAYED BARAKAT

B.Sc. of Agriculture (Biothenology), Fac. of Agric., Ain Shams Univ., 2011 M.Sc. of Microbiology (Virology), Fac. of Agric., Ain Shams Univ., 2017

This thesis for Ph. D degree has been approved by: Dr. Gamal El-Didamony Mohamed Prof. Virology, Fac. of Science, Zagazig University. Dr. Atef Shoukry Sadik Prof. Emeritus of Agric. Viruses, Fac. of Agric., Ain Shams University Dr. Badowi Abd El-Salam Othman Prof. Emeritus of Agric. Viruses, Fac. of Agric., Ain Shams University Dr. Abd Allah Mohamed Eid El-Ahdal Prof. Emeritus of Agric. Viruses, Fac. of Agric., Ain Shams University

Date of Examination: 25 /5 /2022

EFFECT OF PHAGES ON SOME PHOSPHATE SOLUBLE BACTERIA IN THE SOIL

By

ALAA MOHAMED FATHI EL-SAYED BARAKAT

B.Sc. of Agriculture (Biothenology), Fac. of Agric., Ain Shams Univ., 2011 M.Sc. of Microbiology (Virology), Fac. of Agric., Ain Shams Univ., 2017

Under the supervision of:

Dr. Abd Allah Mohamed Eid

Prof. Emeritus of Agriculture Viruses, Department of Agric. Microbiology, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Badawi Abd El-Salam Othman

Prof. Emeritus of Agriculture Viruses, Department of Agric. Microbiology, Faculty of Agriculture, Ain Shams University.

Dr. Samar Said Ahamed El-Masry

Associate Professor of Agricultural Viruses, Department of Agric. Microbiology, Faculty of Agriculture, Ain Shams University.

ABSTRACT

Alaa Mohamed Fathi El-Sayed Barakat: Effect of phages on some phosphate soluble bacteria in the soil. Unpublished Ph.D Thesis, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, 2022.

Phosphate-solubilizing microorganisms play an important role in supplementing phosphorus to the plants, allowing a sustainable use of phosphate fertilizers. Microorganisms are involved in a range of process that affect the transformation of soil phosphorus (P) and thus are integral component of the soil 'P' cycle. Several mechanisms like lowering of soil pH by acid production, ion chelation, and exchange reactions in the growth environment have been reported to play a role in phosphate solubilization by Phosphate- solubilizing bacteria (PSB). It is slowly emerging as important organisms for the soil improvement.

In this study four bacterial viruses (phages) specific for *Bacillus velezensis* were isolated on the basis of the differences between the plaque morphology. The phages were signed as Bv_1 - Bv_2 - Bv_3 and Bv_4 . The isolated phages were propagated by the enrichment liquid method which gave particles with concentration of 10^{11} PFU/ml. Phages were purified and concentrated by differential centrifugation. Electron microscopy of the 2% urinyal acetate negatively stained showed that phages were belonging to family Siphoviridiae.

Bacillus velezensis phages infect many strains belong to its species, which means that they have a broad host range. Physical properties of *B. velezensis* phages revealed that, they different in their stability to TIP, DEP and *LIV*, pH degrees, Osmotic shock and effect of different solvents.

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) technique was performed to determine the properties of viral proteins. The purity and quantity of isolated DNAs were determined spectrophotometrically. Data showed that concentration of Bv_1 DNA was $0.75~\mu g/\mu L$, Bv_2 DNA and Bv_3 DNA were $0.60~\mu g/\mu L$ and finally Bv_4 DNA $0.55~\mu g/\mu L$. The analysis of genetic material of $\emph{B. velezensis}$ phages was determined based on both Inter Simple Sequence Repeat (ISSR) PCR technique and restriction enzymes. Data showed different amplifications patterns with all phages .

Finally, study the effect of *B. velezensis* phages on *B. velezensis* as solubilized phosphate bacteria and it's reflectance on sunflower was investigated in the pot experiment. The results revealed that: adding the rock phosphate to the soil led to increase plant height, stem diameter, number of leaves, chlorophyll A&B, caroteins, prolein, head diameter, seed weight and the oil percentage. Inoculation of the sandy soil with the bacteria increased solubilized phosphate. The virus deceased the total count of bacteria. Inoculation of the sandy soil with the bacteria increased plant height, steam diameter, number of leaves, chlorophyll A&B, caroteins, prolein, head diameter, seed weight and the oil percentage. The infection of bacteria with the virus reduced the parameters mentioned before.

Keywords: Bacteriophages, Solubilizing phosphorus, Phage stability, Electron microscopey, SDS-PAGE, Restriction enzymes and ISSR – PCR.

ACKNOWLEDGEMENT

I would to think **Prof. Dr. Abdullah Mohamed Eid,** the main supervisor, Emeritus Professor of Agricultural Viruses, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University for his supervision, his valuable time and advices during this work and may God protect him and take care of him and prolong his life.

I express my deep gratitude to **Prof. Dr. Badawi Abd El-Salam Othman**, Emeritus Professor of Agricultural Viruses, Faculty of Agriculture, Ain Shams University. Since the idea of the subject of the study was developed, and his constant encouragement and sensitivity to my first steps in the field of bacterial viruses, as well as constructive criticism and keen interest, providing all means to implement experiments and reach satisfactory results.

Special thanks are due to **Dr. Samar Said El-Masry**, Associate Prof. of Agric. Microbiology, Dept. of Agric. Microbiology, Fac. of Agriculture, Ain Shams University for her valuable assistance, precious, advices and helpful comments which necessary to the accomplishment of this study.

I would like to thank my honorable professors and colleagues in the Department of Agricultural Microbiology, especially my professors and colleagues in the branch of virus, for the assistance and advice they provided me throughout the study period and all the workers in the virus branch for helping me in experiments, especially the applied experiment.

CONTENTS

	Page
LIST OF TABLES	V
LIST OF FIGURES	VIII
1. INTRODUCTION	3
2.REVIEW OF LITERATURE	6
3. MATERIALS AND METHODS	31
3.1.Media &Buffere andSolutions	31
3.2.Methods	39
3.2.1. Source of soil samples.	39
3.2.2. Source of the bacterial host (Bacillus sp.)	40
3.2.3. Efficiency of <i>Bacillus sp.</i> for phosphate solublization.	40
3.2.4. Identification of the bacterial isolate.	40
3.2.5. Occurrence of <i>Bacillus velezensis</i> phages in soil samples .	41
3.2.5.1. Preparation of bacteriophages crude lysate.	41
3.2.5.2. Qualitative and quantitative assaying of Bacillus	
velezensis phages.	41
3.2.5.3. Isolation of different isolates of phage.	42
3.2.5.4. Propagation of isolated phages .	43
3.2.6. Purification and concentration of the phages.	44
3.2.7. Characteristis spectrophotometric of Bacillus velezensis	
phages.	45
3.2.8. Virion properties of <i>Bacillus velezensis</i> phages .	45
3.2.8.1. Morphological properties of <i>Bacillus velezensis</i> phages.	45
3.2.8.2. Physical properties of <i>Bacillus velezensis</i> phages.	46
3.2.8.3. Biological properties.	48
3.2.8.4. Molecular properties of <i>Bacillus velezensis</i> phages .	48
3.2.8.4.1. Properties of proteins of <i>Bacillus velezensis</i> phages .	48
3.2.8.4.2. Properties of genomes of <i>Bacillus velezensis</i> phages .	52
3.2.8.5. Serological properties of <i>B. velezensis</i> phages .	55

3.2.9. Effect of the isolated virulant bacteriophages on B.	
velezensis activity in the soil and reflecting that on the	
plant growth parameters .	57
3.2.9.1. Study the effect of <i>B. velezensis</i> phages on Solubilized	
Phosphate Bacteria in vitro.	57
3.2.9.2. Study the effect of phages on B. velezensis and their	
reflect on sunflower pot experiment.	61
3.2.10. Statistical analysis .	65
4. RESULTS	66
4.1. The identification of the bacterial isolate	66
4.2. The identification of the bacterial isolate by 16S Rrna	
sequencing	66
4.3. Occurrence of viruses specific for Bacillus spp. in some	
Egyptian soils	69
4.3.1. Isolation of <i>Bacillus velezensis</i> bacteriophages	74
4.3.2. Titer of <i>Bacillus velezensis</i> phages stocks lysates	75
4.3.3. Propagation and purification of <i>Bacillus velezensis</i> phages	76
4.3.4. Spectrophotometrics characteristic of <i>Bacillus velezensis</i>	
bacteriophages	77
4.3.5. Bacillus velezensis phages properties	80
4.3.5.1. Morphological properties	80
4.3.5.2. Physical properties of <i>Bacillus velezensis</i>	82
4.3.5.2.1. Thermal stability of <i>Bacillus velezensis</i> phages	82
4.3.5.2.2. Dilution end point (DEP)	83
4.3.5.2.3. Longivity in vitro	83
4.3.5.2.4. Effect of pH valus of <i>Bacillus velezensis</i> phages	85
4.3.5.2.5. Osmotic shock stability	87
4.3.5.2.6. Effect of detergent or solvents on the stability	89
4.3.5.3. Biological properties	91
4.3.5.3.1.Host range patteren of <i>Bacillus velezensis</i> phages	91
4.3.5.3.2. One step growth experiment of Bacillus velezensis	
phages	92

4.3.5.4. Molecular properties of <i>Bacillus velezensis</i> phages	95
4.3.5.4.1. Properties of proteins of <i>Bacillus velezensis</i> phages	
4.3.5.4.1.1. Determination of proteins concentration	
4.3.5.4.1.2. Electrophoretic separation of viral proteins	96
4.3.5.4.2. Properties of genomes of <i>Bacillus velezensis</i> phages	101
4.3.5.4.2.1. Extraction and determination of DNA contents of the	
isolated phages	101
4.3.5.4.2.2. Genetic diversity of DNA genomes of the four	
Bacillus velezensis phages	103
4.3.5.4.2.2.1. Digestion of Bacteriophages DNAs with Restriction	
Enzymes	103
4.3.5.4.2.2.2. Inter simple sequence repeats Polymerase Chain	
Reaction analysis (ISSR – PCR)	108
4.3.5.5. Serological properties of <i>B. velezensis</i> phages	117
4.3.5.5.1. Determination of Antibodies specific for <i>B. velezensis</i>	
phages by Enzyme Linked Immuno Sorbant Assay	
(Indirect ELISA)	117
4.4. Effect of the isolated virulant bacteriophages on the target	
solubilized phosphate bacteria activity in the soil and	
reflecting that on the plant growth parameters	119
4.4.1.Study the effect of B. velezensis phages on Solubilized	
Phosphate Bacteria in vitro	119
4.4.1 .1. Effect of <i>B.velezensis</i> on Phosphorus solubilization and	
effect of the phages (virulent) on the activation of	
B.velezensis in the broth medium (PVK) (ppm/l)	119
4.4.1.2. Determination the changes of pH degrees caused by	
B.velezensis and it's lytic phages in PVK medium	
through 56 days	121
4.4.1.3. Determination of total count of both <i>B.velezensis</i> (cfu/ml)	
and their phages (pfu/ml)	123

4.4.2. Study the effect of B. velezensis phages on Solubilized	
Phosphate Bacteria and their reflect on sunflower pot	
experiment in vivo	125
4.4.2.1. Estimation of phosphorus in soil in pots (ppm/kg)	125
4.4.2.2. Determination the change of pH degrees	127
4.4.2.3. Determination of total count of both <i>B.velezensis</i> (cfu/ml)	
and their phages (pfu/ml)	129
4.4.2.4. Effect of phages specific for <i>B. velezensis</i> on the main host	
and it's reflectance on the vegetative growth of Sunflower	
after 45 and 70 days from cultivation	132
4.4.2.5. Effect of <i>B. velezensis</i> bacteriophages on <i>B. velezensis</i> and	
it's reflectance on the physiological traits of Sunflower (ch	
a, ch b , ch a + ch b , carotenoids(mg g ⁻¹ fresh wt), and	
proline (μg g^{-1} fresh wt.) after 45 and 70 days from	
treatment	135
4.4.2.6. Effect of virulent bacteriophages specific for on B.	
velezensis on yield and percentage of Sunflower oils	138
5.DISCUSION	140
6.SUMMARY	
7. REFERENCES	
ARABIC SUMMARY	

LIST OF TABLES

Title		Page
Table (1):	Composition of a modified Hoagland nutrient	
	solution	38
Table (2):	Sources of soil samples	39
Table (3):	Primer were used for determining the	
	nucleotide sequences of 16s rRNA	40
Table (4):	Formation of gel from the stock solutions	51
Table (5):	Sequences and annealing temperature of	
	primers for ISSR	54
Table (6):	Imunization scadule used for preparation of the	
	specific antiserum of <i>B. velezensis</i>	56
Table (7):	Sequences producing significant alignments of	
	Bacillus isolate under investigation compared to	
	different species of Bacillus facilitate	
	phosphorous in the soil.	68
Table (8):	Qualitative and quantitative assaying of phage	
	specific for Bacillus spp. Isolate	70
Table (9):	Morphological properites of the resulted	
	plaques from the isolated viruses specific for	
	Bacillus velezensis	75
Table (10):	Titeration of Bacillus velezensis phages	
		76
Table (11):	UV characteristic of Bacillus velezensis phages	77
Table (12):	Morphological charaterstics of the isolated	
	phages	80
Table (13):	Thermal inactivation point of <i>B.velezensis</i>	82
Table (14):	Dilution end point of bacteriophages specific	
	for Bacillus velezensis	83
Table (15):	Longivity of Bacillus velezensis phages in vitro	84
Table (16):	Effect of pH degrees of Bacillus velezensis	86

	phages	
Table (17):	Effect of osmotic shock on Bacillus velezensis	
	phages	88
Table (18):	Effect of some solvents on phages stability	90
Table (19):	Determination of lytic pattern of the isolated <i>B</i> .	
	velezensis phages	91
Table (20):	Biological properties of Bacillus velezensis	
	phages	92
Table (21):	proteins concentration of Bacillus velezensis	
	phages assaying with Bradford method	95
Table (22):	Relationship between molecular weight(MW)	
	of B.velezensis phages and Retardation factor	
	$(R_{\rm f})$	97
Table (23):	DNA contents of the isolated phages	101
Table (24):	Restriction enzymes techniques analysis on B.	
	velezensis phages (matrix where '1' for	
	presence of DNA fragement and '0' for absence	
	of a gragement for each enzyme)	104
Table (25):	The similarity percentage between B. velezensis	
	phages revealed by Restriction enzymes	
	techniques	107
Table (26):	ISSR PCR techniques analysis on B. velezensis	
	phages (matrix where '1' for presence of DNA	
	fragement and '0' for absence of a gragement	
	for each primer)	109
Table (27):	Total amplified fragements as revealed by ISSR	
	PCR techniques on B. velezensis phages	111
Table (28):	Total amplified fragements (polymorphic ,	
	monomorphic , unique) as revealed by ISSR	
	PCR techniques on B. velezensis phages	112
Table (29):	The similarity percentage between <i>B. velezensis</i>	
	phages revealed by ISSR PCR techniques	115

Table (30):	Determination of Antibodies specific for B.	
	velezensis phages by Indirect ELISA	117
Table (31):	Effect of B.velezensis on Phosphorus	
	solubilization and effect of the phages (virulent)	
	on the activation of B.velezensis in the broth	
	medium (PVK) (ppm/l)	120
Table (32):	Determination the changes of pH degrees	
	caused by B.velezensis and it's lytic phages in	
	PVK medium through 56 days	122
Table (33):	Determination of total count of both	
	B.velezensis (cfu/ml) and their phages (pfu/ml)	124
Table (34):	Estimation of phosphorus in pots (ppm/kg)	126
Table (35):	Determination the changes of pH values in pots	128
Table (36):	Determination of total count of both	
	B.velezensis (cfu/ml) and their phages (pfu/ml)	131
Table (37):	Effect of phages specific for B. velezensis on	
	the main host and it's reflectance on the	
	vegetative growth of Sunflower after 45 and 70	
	days from cultivation	134
Table (38):	Effect of B. velezensis bacteriophages on B.	
	velezensis and it's reflectance on the	
	physiological traits of Sunflower (ch a, ch b, ch	
	a + ch b, carotenoids(mg g ⁻¹ fresh wt), and	
	proline (μg g ⁻¹ fresh wt.) after 45 and 70 days	
	from treatment	137
Table (39):	Effect of virulent bacteriophages specific for on	
	B. velezensis on yield and percentage of	
	Sunflower oils	139

VIII

LIST OF FIGURES

Title		Page
Fig. (1):	Phosphorus's cycle	8
Fig. (2):	Schematic diagram of soil phosphorus mobilization and immobilization by bacteria	11
Fig. (3):	Propagation of <i>Bacillus velezensis</i> phages by liquied method (large skill)	43
Fig. (4):	Purification of Bacillus velezensis phages by alternative centrifugation (high and low)	44
Fig. (5):	Transmission Electron microscope	46
Fig. (6):	Preparation of pot experiment	62
Fig. (7):	Vegetative growth of pot experiment	64
Fig. (9):	Halo zones formation around the growth of <i>Bacillus sp</i> facilitate phosphorus in the soil	66
Fig. (10):	Collected samples of some plants rizosphere	71
Fig. (11):	Qualititive detection of <i>Bacillus velezensis</i> phage by the spot test technique.	72
Fig. (12):	Morphological properties of plaques of <i>Bacillus</i> velezensis phages produced by plaque assay technique.	73
Fig. (13):	U.V. absorbation spectrum of <i>Bacillus velezensis</i> phages.	78
Fig. (14):	Electron micrographs of <i>Bacillus velezensis</i> stained with 2% urinyal acetate.	81
Fig. (15):	Effect of pH values on Bacillus velezensis phages	87
Fig. (16):	Effect of osmotic shock on <i>Bacillus velezensis</i> phages	89
Fig. (17):	Effect of solvents on phages stability	90
Fig. (18):	Growth curve of Bacillus velezensis phages	93