

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / حسام الدين محمد مغربي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

ملاحظات: لا يوجد

REMEDIATION OF SOIL CONTAMINATION CAUSED BY BRICK INDUSTRY USING ELECTROKINETIC TECHNIQUE: A CASE STUDY OF A BRICK FACTORY IN AL-NAHRAWAN AREA IN IRAQ

By

Sarah Duraid Ahmed Zangana

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Civil Engineering – Public Works

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2022

REMEDIATION OF SOIL CONTAMINATION CAUSED BY BRICK INDUSTRY USING ELECTROKINETIC TECHNIQUE: A CASE STUDY OF A BRICK FACTORY IN AL-NAHRAWAN AREA IN IRAQ

By

Sarah Duraid Ahmed Zangana

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Civil Engineering – Public Works

Under the Supervision of

Prof. Dr. Mona M. Galal El-Din Dr. Safwat Mahmoud Safwat

Professor of Sanitary & Environmental Engineering Public Works Department Faculty of Engineering Cairo University Associate Professor of Sanitary & Environmental Engineering
Public Works Department
Faculty of Engineering
Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2022

REMEDIATION OF SOIL CONTAMINATION CAUSED BY BRICK INDUSTRY USING ELECTROKINETIC TECHNIQUE: A CASE STUDY OF A BRICK FACTORY IN AL-NAHRAWAN AREA IN IRAQ

By

Sarah Duraid Ahmed Zangana

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in Civil Engineering – Public Works

Approved by the Examining Committee

Prof. Dr. Mona M. Galal El-Din (Thesis Main Advisor)

Dr. Safwat Mahmoud Safwat (Advisor)

Dr. Minerva Edward Matta (Internal Examiner)

Prof. Dr. Maha Mostafa El Shafei

(External Examiner)

Professor of Sanitary & Environmental Engineering Housing and Building National Research Center

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2022 **Engineer's Name:** Sarah Duraid Ahmed Zangana

Date of Birth: 1 / 09 / 1988

Nationality: Iraqi

E-mail: <u>kanz_m2002@yahoo.com</u>

Phone: 001101618708

Address: 21 Gamaa St. Giza, Egypt

Registration Date: 01/03/2020 **Awarding Date:** / /2022

Degree: Master of Science

Department: Civil Engineering – Public Works

Supervisors:

Prof. Dr. Mona M. Galal El-Din Dr. Safwat Mahmoud Safwat

Examiners:

Prof. Dr. Mona M. Galal El-Din (Thesis Main Advisor)

Dr. Safwat Mahmoud Safwat (Advisor)

Dr. Minerva Edward Matta (Internal Examiner)
Prof. Dr. Maha Mostafa El Shafei (External Examiner)

Professor of Sanitary & Environmental Engineering Housing and Building National Research Center

Title of Thesis:

Remediation of Soil Contamination Caused By Brick Industry Using Electrokinetic Technique: A Case Study of the Brick Factory In Al-Nahrawan Area In Iraq.

Key Words:

Brick; Soil; Pollution; Electrokinetic; Heavy Metals.

Summary:

In this thesis, polluted soil with heavy metals (Pb, Cd, V, Ni, Cu, Zn, Cr) and S is being treated to remove the pollutants from it by the electrokinetic methods. The experimental setup consisted of electrodes placed in the soil and connected to electric power source. Twelve experiments were conducted. The following parameters were studied: the type of electrode, voltage, distance between the electrodes, and the use of electrolytes. The removal rates of heavy elements by electrokinetic method differed from one experiment to another, but they proved to be effective in removing pollutants from the soil. The electrokinetic process was found to be a successful process to reduce the concentration of soil contaminants including heavy metals (Pb, Cd, V, Ni, Cu, Zn, Cr) and S, when using stainless steel and graphite electrodes. The best electrode for removing Pb, Cd, Cr and S was found to be the graphite electrode, while the best electrode to remove V, Zn, Cu and Ni was stainless steel.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Sarah Duraid Ahmed Date: / / 2022

Signature:

Dedication

To from the first drop of water I drank from his river

To from the first atom of air I inhaled from him

... My beloved country, Iraq

To my support, my hope and my life

... my **father** and **mother**

To whom do I draw my energy and strength

... my **sister** and my **brothers**

With my love...

Sarah

2022

Acknowledgments

There is no doubt that the completion of this work would not be possible without the grace of Allah, then the help, support and motivation of many important people.

First, I would like to thank my thesis main advisor **Prof. Dr. Mona M. Galal El-Din**. When I ran into a trouble spot or had a question about my research or writing I asked her. She consistently allowed this thesis to be my ownwork, but steered me in the right direction whenever she thought I needed it. I am gratefully indebted to her and thankful for her valuable comments on this thesis.

I would like to express my sincere gratitude to **Dr. Safwat Mahmoud Safwat** for his help, support and inspiring discussions. I would also like to acknowledge him as the second reader of this thesis. I would like to thank him as he was involved in my experimental work for this thesis. Without his participation and advice, the thesis could not have been successfully conducted.

I must express my very profound gratitude to my sister **Dr. Suzan Duraid and Dr. Abbas Ali Saleh, Dr. Faris Al-Aany, Dr. Khalid Zaher, Yousef Ibrahem, Eng. Zainab Zamel and Eng. Saja Hashem** to providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without them.

I would like to express my thanks to **Prof. Dr. Husam Alden Ahmed Abd Al Fatah** dean of the Faculty of Engineering at Cairo University without him, I would not have completed my studies. I am very grateful to him. Thank you

Finally, I dedicate my sincere thanks and gratitude to **Director General Consultant Engineer Essa Al-Fayad** who encouraged and supported me and made me walk the path of success until I achieved my dreams and ambitions to complete my studies. Thank you.

Thank You Sarah

Table of Contents

Discl	aimer	Ì
	cation	ii
	nowledgments	iii
	e of Contents	iv
List	of Tables	vii
	of Figures	viii
	enclature	X
Abst	ract	xii
Chap	oter 1: Introduction	1
1.1	Introduction	1
1.2	Problem Statement	2
1.3	Objectives.	2
1.4	Thesis Organization	3
Chap	oter 2: Literature Review	4
2.1.	Soil Quality	4
2.1.1	. Introduction	4
2.1.2	. Soil contamination by heavy metals	4
2.1.3	. Soil Contamination with Heavy Metals	5
2.1.3	.1. Lead	5
2.1.3	.2. Cadmium	6
	.3. Vanadium.	6
2.1.3	.4. Chromium	7
2.1.3	.5. Other Heavy Metals	8
2.1.3	.5.1 Mercury	8
2.1.3	.5.2 Copper	8
2.1.3	.5.3 Nickel	9
	.5.4 Zinc	9
	.6. Sulfur	10
	. Technologies Utilized for Soil Remediation	10
	.1 Phytoremediation	11
	.2 Isolation and Containment	11
	.3 Bioremediation	11
	.4 Soil Flushing	11
	.5 Soil Washing	11
	.6 Electrokinetic	12
	Electrokinetic Remediation.	12
	Introduction.	12
	Effects of Potential Difference in electrokinetic remediation	13
	Effect of electrodes on electrokinetic remediation	15
2.2.3	.1. The electrode materials	15

2.2.3.2. Electrode configuration	16
2.2.3.3. Spacing between electrodes	17
2.2.4. Effects of electrolyte on electrokinetic remediation	17
2.2.5. Effects of ion exchange membrane on electrokinetic remediation	19
2.2.6. Overview of Previous Studies about Electrokinetic Remediation	19
2.2.6.1. Applications of Graphite and Stainless Steel in Electrokinetic Remediation	19
2.2.6.2. Heavy Metals removal using Electrokinetic Remediation	20
2.2.6.3. Other pollutants removal using Electrokinetic Remediation	21
2.3. Pollution Due to Brick Industries in Iraq	22
2.3.1. Introduction about Brick Industries	22
2.3.2. Characteristic of Polluted Soil due to Brick Industries	22 22
2.3.4. Characteristics of Polluted Water due to Brick Industries	23
2.3.5. Ways to Reduce and Prevent Soil Pollution due to Brick Industries	23
2.3.5.1. Cleaner Production.	23
2.3.5.2. Treatment of Polluted Soil	24
2.3.6. Case Study of the Brick Factory in Al- Nahrawan Area in Iraq	25
2.3.6.1. Description of Brick Factory in Al- Nahrawan Area	26
2.3.6.2. Environmental pollution caused by the brick factory in Al-Nahrawan	28
Chapter 3: Methodology of experimental work	30
3.1. General Introduction.	30
3.2. The Field Work: - Study Area	30
3.3. Geographic Location of Al-Nahrawan	30
3.4. Topography& Geomorphology of the study Area	31
3.5. The groundwater	31
3.6. Climate of the study area	31
3.6.1 Temperature	31
3.6.2 Rainfall	32
3.6.3 Relative humidity	32
3.7. Field Measurement of Soil Pollutants	33
3.8. Field Measurement of Air Pollutants	34
3.9. The Equipment used in Field	39
3.10. Soil Samples	39
3.11. Electrokinetic Tests.	42
3.11.1 Reactor Setup	42
3.12 .Sampling	46
Chapter 4: Results and Discussion	48
4.1.Introduction	48
4.2. Performance of EK without electrolyte using stainless steel (St.) electrode.	48
4.2.1. Performance of stainless steel electrode in removal Pb at different V/S (v/cm)	
	48

4.2.2. performance of stainless steel electrode in removal Cd at different V/S
(v/cm)
4.2.3. performance of stainless steel electrode in removal V at different V/S (v/cm)
4.2.4. performance of stainless steel electrode in removal S at different V/S (v/cm)
4.2.5. performance of stainless steel electrode in removal Zn, Cr, Ni and Cu at different V/S (v/cm)
4.2.6. Variation of pH when using stainless steel electrode and without electrolyte
4.2.7. Variation of Electrical Conductivity when using stainless steel electrode and without electrolyte
 4.3. Performance of EK without electrolyte using graphite (Gr) electrode 4.3.1. performance of graphite electrode in removal Pb at different V/S (v/cm) 4.3.2.performance of graphite electrode in removal Cd at different V/S (v/cm) 4.3.3. performance of graphite electrode in removal V at different V/S (v/cm) 4.3.4. performance of graphite electrode in removal S at different V/S (v/cm) 4.3.5. Performance of graphite electrode in removal Zn, Cr, Ni and Cu at different V/S (v/cm)
4.3.6. Variation of pH when using graphite electrode and without electrolyte 4.3.7. Variation of Electrical Conductivity when using graphite electrode and without electrolyte
4.4. Performance of EK with electrolyte using stainless steel electrode
4.4.2. Performance of stainless steel electrode in removal Zn, Cr, Ni and Cu at V/S= 5 v/cm
4.5. Performance of EK with electrolyte using graphite electrode
4.5.2. Performance of graphite electrode in removal Zn, Cr, Ni and Cu at V/S =3.75 v/cm
4.6. Comparison between different experiment
4.7. Morphology of electrodes used in electrokinetic treatment
4.7.1. SEM Stainless steel electrode in EK process
4.7.2 SEM of Graphite electrodes in EK process
4.8. Cost Analysis
4.9. Comparison with other research results
Chapter 5: Conclusion and Recommendations
5.1 Conclusion
5.2. Recommendations for future research
References

List of Tables

Table 2.1. Vanadium-exposed workers' symptoms (V ₂ O ₅)	7
Table 3.1. Concentration for the average of the soil samples from Al-Nahrawan /	
compound bricks factories in ppm	33
Table 3.2. Concentration results for the least polluted soil from Al-Nahrawan	
area in ppm	33
Table 3.3. Local and global standard of some air pollutants	36
Table 3.4. Concentrations of TSP &PM in the studied area for September-2020	
(μg/m3)	36
Table 3.5. Concentrations of TSP&PM in the studied area for December-2020	
$(\mu g/m^3)$	36
Table 3.6. Concentrations of TSP&PM in the studied area for March-2021	
$(\mu g/m3)$	37
Table 3.7. Concentrations of TSP&PM in the studied area for June-2021	
$(\mu g/m3)$	37
Table 3.8. Gases concentrations measurements in the sites of studied area (ppm)	
in September period 2020	37
Table 3.9. Gases concentrations measurements in the sites of studied area (ppm)	
in December period 2020	38
Table 3.10. Gases concentrations measurements in the sites of studied area (ppm)	
in March period 2021	38
Table 3.11. Gases concentrations measurements in the sites of studied area (ppm)	
in June period 2021	38
Table 3.12. Figure of the equipment (devices) used in field	39
Table 3.13. Soil charactristics before the tretment	42
Table 3.14. Tools and materials utilized in the experiment	42
Table 3.15. Variable parameters for EC experiments	45
Table 4.1. Comparison between different operating conditions	68
Table 4.2. Energy Consumption Cost During Electrokinetic Remediation	73
Table 4.3. Comparison with other paper and research results	74

List of Figures

Fig. 1.1. Al-Nahrawan industry region with the brick factories	
Fig. 2.1: Schematic Clay Brick Production Process Flow	28
Fig. 2.2 :Flow chart of the steps of the production process of making bricks with the	
pollutants coming out of each step resulting residue	
Fig. 3.1. Location of Al-Nahrawan in Baghdad Governorate	
Fig. 3.2. Maximum and minimum annual rates of air temperature respectively in Bag	hdad
city during the period 2016-2020.	
Fig. 3.3. Average annual rates for rainfall in Baghdad during the period (2016-2020).	32
Fig. 3.4. Average annual rates for maximum and minimum RH in Baghdad during the	e
period 2016-2020	
Fig. 3.5. Spot7 Satellite image (with resolution 1.5m) in 26/4/2021 of Al-Nahrawan s	show
the Location Sample	
Fig. 3.6. NITON XL31 device (XRF), Thermo scientific 900 heavy metals analyzer,	US-
made	
Fig. 3.7. Gasmet-DX4040 FTIR Gas Analyzer Version E2.04	39
Fig. 3.8. AEROCET 531	39
Fig. 3.9 .pH meter (WTW series, inolab pH 720)	40
Fig. 3.10.Conductivity meter (HANNA type- HI9811-5)	
Fig. 3.11 . Sensitive Balance (Mettler AE 166)	
Fig. 3.12. Flame atomic absorption (SHIMADZU, ASC-7000) (Heavy metal measure	
Fig. 3.13. UV(sulfate meter)	
Fig. 3.14. Scanning Electron Microscope (SEM) (Quanta FEG 250, FEI)	
Fig. 3.15. EC cell and how ions move a- with electrolytes and b- without electrolytes	
Fig. 3.16. Sixteen EC experiments with different conditions	
Fig. 3.17. EK Cell Setup without electrolyte chambers	
Fig. 3.18. EK Cell Setup with electrolyte chambers	
Fig. 4.1. The lead removal efficiency with different V/S ratio using EK with stainless	
electrodes and without electrolyte	49
Fig. 4.2. The cadmium removal efficiency with different V/S ratio using EK with state	inless
steel electrodes and without electrolyte	50
Fig. 4.3. The vanadium removal efficiency with different V/S ratio using EK with sta	inless
steel electrodes and without electrolyte	51
Fig. 4.4. The sulfur removal efficiency with different V/S ratio using EK with stainle	ss steel
electrodes and without electrolyte	52
Fig. 4.5. Zn, Cu, Ni, and Cr removal efficiency at V/S 1.25 v/cm using EK with stain	less
steel electrodes and without electrolyte	53
Fig. 4.6. Zn, Cu, Ni, and Cr removal efficiency at V/S 2.5 v/cm using EK with stainl	ess
steel electrodes and without electrolyte	53
Fig. 4.7. Zn, Cu, Ni, and Cr removal efficiency at V/S 3.75 v/cm using EK with stain	less
steel electrodes and without electrolyte	53
Fig. 4.8. Zn, Cu, Ni, and Cr removal efficiency at V/S 5 v/cm using EK with stainless	s steel
electrodes and without electrolyte	54
Fig. 4.9. Zn, Cu, Ni, and Cr removal efficiency at V/S 6.25 v/cm using EK with stain	less
steel electrodes and without electrolyte	54
Fig. 4.10. Zn, Cu, Ni, and Cr removal efficiency at V/S 7.5 v/cm using EK with stain	less
steel electrodes and without electrolyte	
Fig.4.11. pH value at the end of experiment at various V/S value using EK with stain	
steel electrodes and without electrolyte	55
Fig.4.12. EC value at the end of experiment at various V/S value using EK with stain	

Fig. 4.13. The lead removal efficiency with different V/S ratio using EK with graphite electrodes and without electrolyte
Fig. 4.14. The codmium removal afficiency with different V/C ratio using EV with amorbita
Fig. 4.14. The cadmium removal efficiency with different V/S ratio using EK with graphite
electrodes and without electrolyte
Fig. 4.15. The vanadium removal efficiency with different V/S ratio using EK with graphite
electrodes and without electrolyte
Fig. 4.16. The sulfur removal efficiency with different V/S ratio using EK with graphite
electrodes and without electrolyte
Fig. 4.17. Zn, Cu, Ni, and Cr removal efficiency at V/S 1.25 v/cm using EK with graphite
electrodes and without electrolyte
Fig. 4.18. Zn, Cu, Ni, and Cr removal efficiency at V/S 2.5 v/cm using EK with graphite
electrodes and without electrolyte
Fig. 4.19. Zn, Cu, Ni, and Cr removal efficiency at V/S 3.75 v/cm using EK with graphite
electrodes and without electrolyte
Fig. 4.20. Zn, Cu, Ni, and Cr removal efficiency at V/S 5 v/cm using EK with graphite
electrodes and without electrolyte
Fig. 4.21. Zn, Cu, Ni, and Cr removal efficiency at V/S 6.25 v/cm using EK with graphite
electrodes and without electrolyte
Fig. 4.22. Zn, Cu, Ni, and Cr removal efficiency at V/S 7.5 v/cm using EK with graphite
electrodes and without electrolyte
Fig.4.23. pH value at the end of experiment at various V/S value using EK with graphite
electrodes and without electrolyte
Fig.4.24. EC value at the end of experiment at various V/S value using EK with graphite
electrodes and without electrolyte
Fig. 4.25. Pb, Cd, S, and V removal efficiency at V/S 5 v/cm no space between soil and
electrode using EK with stainless steel electrodes and with electrolyte
Fig. 4.26. Pb, Cd, S, and V removal efficiency at V/S 5 v/cm space between soil and
electrode = 1 cm using EK with stainless steel electrodes and with electrolyte
Fig. 4.27. Zn, Cu, Ni, and Cr removal efficiency at V/S 5 v/cm no space between soil and electrode using EK with stainless steel electrodes and with electrolyte
Fig. 4.28. Zn, Cu, Ni, and Cr removal efficiency at V/S 5 v/cm space between soil and electrode = 1 cm using EK with stainless steel electrodes and with electrolyte
electrode = 1 cm using EK with stainless steel electrodes and with electrolyte Fig. 4.29. Pb, Cd, S, and V removal efficiency at V/S 3.75 v/cm no space between soil and
electrode using EK with graphite electrodes and with electrolyte
Fig. 4.30. Pb, Cd, S, and V removal efficiency at V/S 3.75 v/cm space between soil and
electrode = 1 cm using EK with graphite electrodes and with electrolyte
Fig. 4.31. Zn, Cu, Ni, and Cr removal efficiency at V/S 5 v/cm no space between soil and
electrode using EK with graphite electrodes and with electrolyte
Fig.4.32. Zn, Cu, Ni, and Cr removal efficiency at V/S 5 v/cm space between soil and
electrode = 1 cm using EK with graphite electrodes and with electrolyte
Fig.4.33. Comparison between different experiments
Fig.4.34. Scanning electron microscopy (SEM) micrograph of St. electrode (anode) before
and after used in EK
Fig.4.35. Scanning electron microscopy (SEM) micrograph of St. electrode (cathode)
before and after used in EK
Fig.4.36. Scanning electron microscopy (SEM) micrograph of Gr. electrode (cathode)
before and after used in EK.
Fig.4.37. Scanning electron microscopy (SEM) micrograph of Gr. electrode (anode) before
and after used in EK.

Nomenclature

Abb.	INTERPRETATION
As	Arsenic
AC	Alternating current
BS	Body mill sludge
Cd	Cadmium
Cu	Copper
Cr	Chromium
CO	Carbon monoxide
CO_2	Carbon dioxide
DBS	Dry bed sewage sludge
DOC	Dissolved organic carbon
DC	Direct current
EC	Electrical conductivity
EDTA	Ethylene diamine tetra acetic acid
EKPR	Electrokinetic assisted phytoremediation
EKR	Electrokinetic remediation
ECC	Energy consumption cost
EEP	Electric energy price
Gr	Graphite
Hg	Mercury
HA	Humic acid
Н	High
H_2S	Hydrogen sulfide
Ir	Iridium
i	Current density
KW	Kilo Watt
LCA	Life cycle analysis
LBS	Lead bearers sewage sludge
MCBP	Milted clay brick powder
mA	Milli amber
Ni	Nickel
NA	Natural attenuation
NO ₂	Nitrogen dioxide
Pb	Lead
PS	Polishing sludge
pН	Negative logarithm of hydrogen ion concentration
ppm	parts per million
PM	Particulate Matter (contain a proportionately larger amount of water and acid forming chemicals such as sulphate and nitrate and carbon material) [67].
PM 10	Particulate Matter with size 10 µm
PM 25	Particulate Matter with size 25 µm
PHC	Polycyclic hydrocarbons
RHA	Rice husk ash
RH	Relative humidity