

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / حسام الدين محمد مغربي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

ملاحظات: لا يوجد

TRIALS ON PRODUCING TOMATO HYBRIDS SUITABLE FOR GREENHOUSE CONDITIONS IN EGYPT

By

WAFAA SABER ELSADEK

B.Sc. Agric. Sci. (Horticulture), Faculty of Agriculture, Ain Shams University, 2003 M.Sc. Agric. Sci. (Vegetable Crops), Faculty of Agriculture, Ain Shams University, 2017

A Thesis Submitted in Partial Fulfillment Of The Requirements for The Degree of

in
Agricultural Sciences
(Vegetable Crops)

Department of Horticulture Faculty of Agriculture Ain Shams University

Approval Sheet

TRIALS ON PRODUCING TOMATO HYBRIDS SUITABLE FOR GREENHOUSE CONDITIONS IN EGYPT

By

WAFAA SABER ELSADEK

B.Sc. Agric. Sci. (Horticulture), Faculty of Agriculture, Ain Shams University, 2003 M.Sc. Agric. Sci. (Vegetable Crops), Faculty of Agriculture, Ain Shams University, 2017

ın	is thesis for Ph.D. degree has been approved by:
Dr	Alaa El-Din Salah Tantawy Researcher Professor of Vegetables, National Research Centre.
Dr.	Professor Emeritus of Vegetables, Faculty of Agriculture, Ain Shams University.
Dr	Associate Professor Emeritus of vegetables, Faculty of Agriculture, Ain Shams University.
Dr	Mohamed Zaky EL-Shinawy Professor of vegetables, Faculty of Agriculture, Ain Shams University.

Date of Examination: 17 / 5 / 2022

TRIALS ON PRODUCING TOMATO HYBRIDS SUITABLE FOR GREENHOUSE CONDITIONS IN EGYPT

By

WAFAA SABER ELSADEK

B.Sc. Agric. Sci. (Horticulture), Faculty of Agriculture, Ain Shams University, 2003 M.Sc. Agric. Sci. (Vegetable Crops), Faculty of Agriculture, Ain Shams University, 2017

Under the supervision of:

Dr. Mohamed Zaky EL-Shinawy

Professor of vegetables, Department of Horticulture, Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Salah El-Din Mahmoud El-Miniawy

Associate Professor Emeritus of vegetables, Department of Horticulture, Faculty of Agriculture, Ain Shams University.

Dr. Fahima Helal Ayoub

Head Research of vegetables, Protected Cultivation Research Department, Horticulture Research Institute, Agriculture Research Center.

ABSTRACT

Wafaa Saber Elsadek. Trials on Producing Tomato Hybrids Suitable for Greenhouse Conditions in Egypt. Unpublished Ph.D. Thesis, Department of Horticulture, Faculty of Agriculture, Ain Shams University, 2022.

This investigation was conducted at Kaha Research Farm, Qalyubia Governorate. affiliated to the Horticultural Research Institute. Agricultural Research Center, Egypt, during three seasons (from 2018 to 2021). The study aimed to evaluate the performance of twenty exotic indeterminate genotypes of tomato (Solanum lycopersicum L.) to determine its suitability of cultivation under greenhouse conditions. The study material was obtained from two globally known gene banks namely, the Centre for Genetic Resources of the Netherlands and U.S. National Plant Germplasm System (GRIN-Global) of United States Department of Agriculture. One locally registered hybrid, Asya was used as the check. The experimental layout was complete randomized block design with three replications. The investigation consisted of two parts; the first part was to evaluate the performance of 15 exotic indeterminate genotypes of tomato. While, the second part to hybridization between the best five genotypes and obtain all possible hybrids. Data were collected for vegetative, flowering and fruit characteristics as well as the number of fruits and both early and total yields per plant. Highly significant differences were observed among the exotic genotypes and the check for all studied characteristics.

The results of part A of the study revealed that the mean check values of fruit weight, firmness and pericarp thickness were significantly high, and several of the exotic genotypes exceeded the check values for vegetative, flowering, and yield characteristics under study. The genotypes coded as G.21 (Allround), G.18 (Alicante), G.6 (Marsol), G.7 (Harzer Kind) and G.3 (Robar) are promising for their overall

performance in the total yield per plant and can be recommended for further exploitation to produce hybrids.

The results of part B of the study, based on overall performance versus to the check hybrid, the hybrid H.13 showed the highest early yield. While, the hybrid H.15 gave the highest total yield per plant, so these hybrids can be further exploited. The parents P1 and P3 showed good performance in the studied yield characters, so they could be exploited to improve the yield in breeding programs. Number of clusters per plant, number of flowers and fruits per cluster, fruit set percentage, number of fruits and early yield per plant were found to have significant influence on yield per plant. Which indicate that yield could be increased by improving these traits.

Keywords: Indeterminate tomato, Exotic genotypes, Evaluation, Heterosis, Combining ability and Correlation.

ACKNOWLEDGEMENT

I would like to express my appreciation and unlimited gratitude to my supervisor **Dr. Mohamed Zaky EL-Shinawy**, Professor of vegetables, Faculty of Agriculture, Ain Shams University, for his supervision, planning of this investigation, motivation, patience, useful help and guidance throughout this study.

I would like to express my appreciation and gratitude to **Dr. Salah El-Din Mahmoud El-Miniawy,** Associate Professor Emeritus of vegetables, Faculty of Agriculture, Ain Shams University, for his supervision, insightful comments, encouragement, counsel and guidance throughout this study.

My sincere thanks and gratitude to **Dr. Fahima Helal Ayoub,** Head Research of vegetables, Horticulture Research Institute, Agriculture Research Center for her useful help, active supervision, objective direction and guidance throughout the proceeding of this study.

I am highly grateful to the Centre for Genetic Resources of the Netherlands (CGN) and the U.S. National Plant Germplasm System (NPGS) of United States Department of Agriculture, for providing tomato germplasm for the present study.

I offer my sincere appreciation and deepest gratitude to my family for their love, help, continued support and encouragement. I am particularly grateful to all my colleagues for their cooperation. My thanks and gratitude to all people who gave me help and support to complete this work in best way.

CONTENTS

	Page
LIST OF TABLES	IV
LIST OF ABBREVIATIONS	VI
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	4
2.1. Evaluation for different cultivars of tomato	4
2.1.1. Vegetative characteristics	8
2.1.2. Flowering characteristics	8
2.1.3. Fruit characteristics	9
2.1.4. Yield characteristics	9
2.2. Hybridization between some genotypes of tomato	9
2.2.1. Evaluation of hybrids	9
2.2.1.1. Vegetative characteristics	12
2.2.1.2. Flowering characteristics	13
2.2.1.3. Fruit characteristics	13
2.2.1.4. Yield characteristics	13
2.2.2. Heterosis (Hybrid vigor)	13
2.2.2.1. Vegetative characteristics	14
2.2.2.2. Flowering characteristics	14
2.2.2.3. Fruit characteristics	14
2.2.2.4. Yield characteristics	14
2.2.3. General and specific combining ability	15
2.2.3.1. Vegetative characteristics	15
2.2.3.2. Flowering characteristics	15
2.2.3.3. Fruit characteristics	16
2.2.3.4. Yield characteristics	16
2.2.4. Correlation among studied traits	16
2.2.4.1. Vegetative characteristics	16
2.2.4.2. Flowering characteristics	17
2.2.4.3. Fruit characteristics	17
2.2.4.4. Yield characteristics	17

	Page
3. MATERIALS AND METHODS	18
3.1. Plant materials and experimental design	18
3.2. Data recorded	21
3.2.1. Vegetative characteristics	21
3.2.1.1. Plant length	21
3.2.1.2. Number of leaves per plant	22
3.2.2. Flowering characteristics	22
3.2.2.1. Number of days to flowering	22
3.2.2.2. Number of clusters per plant	22
3.2.2.3. Number of flowers per cluster	22
3.2.2.4. Number of fruits per cluster	22
3.2.2.5. Fruit set percentage	22
3.2.3. Fruit characteristics	23
3.2.3.1. Fruit weight	23
3.2.3.2. Fruit shape index	23
3.2.3.3. Fruit firmness	23
3.2.3.4. Number of locules per fruit	23
3.2.3.5. Pericarp thickness	23
3.2.3.6. Total soluble solids	23
3.2.4. Yield characteristics	24
3.2.4.1. Number of fruits per plant	24
3.2.4.2. Early yield per plant	24
3.2.4.3. Total fruit yield per plant	24
3.3. Statistical and genetic analyses	24
3.3.1. Part "A" The horticultural evaluation of some exot	ic
genotypes of tomato	24
3.3.2. Part "B" the hybridization between some exot	ic
genotypes of tomato	24
4. RESULTS AND DISCUSSION	26
4.1. Part "A": The horticultural evaluation of some exot	ic
genotypes of tomato	26

	Page
4.1.1. Vegetative characteristics	26
4.1.2. Flowering characteristics	28
4.1.3. Fruit characteristics	30
4.1.4. Yield characteristics	32
4.2. Part "B": The hybridization between some exotic	
genotypes of tomato	34
4.2.1. Evaluation of the hybrids with their parents and the check	
hybrid.	34
4.2.1.1. Vegetative characteristics	34
4.2.1.2. Flowering characteristics	37
4.2.1.3. Fruit characteristics	38
4.2.1.4. Yield characteristics	41
4.2.2. Estimation of mid-parent heterosis (MPH%)	42
4.2.2.1. Vegetative characteristics	42
4.2.2.2. Flowering characteristics	43
4.2.2.3. Fruit characteristics	44
4.2.2.4. Yield characteristics	47
4.2.3. Estimation of general and specific combining ability	
(GCA & SCA)	48
4.2.3.1. Vegetative characteristics	50
4.2.3.2. Flowering characteristics	51
4.2.3.3. Fruit characteristics	52
4.2.3.4. Yield characteristics	54
4.2.4. Correlation among studied traits	56
4.2.4.1. Vegetative characteristics	56
4.2.4.2. Flowering characteristics	56
4.2.4.3. Fruit characteristics	58
4.2.4.4. Yield characteristics	59
5. SUMMARY	
6. REFERENCES	
ARABIC SUMMARY	

LIST OF TABLES

Гable		Page
No.		
1	Names and source of the indeterminate genotypes used in	
	the present study.	18
2	Physical and chemical properties of the soil under study.	19
3	Representation of the cross or hybrid combinations (20 in	
	total) developed as a result of the complete-diallel mating	
	design.	21
4	Mean square values of 15 genotypes and the check hybrid	
	of tomato (combined data for two consecutive seasons	
	2019/2020 and 2020/ 2021).	27
5	Combined mean performance (two seasons 2019/2020	
	and 2020/2021) of the exotic genotypes and check hybrid	
	for several vegetative and flowering characteristics in	
	tomato.	28
6	Combined mean performance (two seasons 2019/2020	
	and 2020/2021) of the exotic genotypes and check hybrid	
	for several fruit and yield characteristics in tomato.	31
7	Mean square values for studied characters of the hybrids	
	with their parents and check hybrid (season 2020/2021).	35
8	Mean performance of the hybrids, their parents and check	
	hybrid for vegetative and flowering characteristics in	
	tomato (season 2020/2021).	36
9	Mean performance of the hybrids, their parents and check	
	hybrid for fruit and yield characteristics in tomato	
	(season 2020/2021).	39
10	Mid-parent heterosis (MPH%) for studied vegetative and	
	flowering characteristics in tomato.	43
11	Mid-parent heterosis (MPH%) for studied fruit and yield	
	characteristics in tomato.	45

12	Mean square values for combining ability of 5×5	
	complete-diallel crosses for studied characteristics in	
	tomato.	49
13	Estimates of general combining ability (GCA) effects of	
	parents for the studied characteristics in tomato.	50
14	Estimates of specific combining ability (SCA) effects of	
	crosses for the studied vegetative and flowering	
	characteristics in tomato.	51
15	Estimates of specific combining ability (SCA) effects of	
	crosses for the studied fruit and yield characteristics in	
	tomato.	54
16	Correlation coefficient between pairs of the characters	
	studied in tomato genotypes (5 parents, 20 F ₁ s and check	
	hybrid).	57

LIST OF ABBREVIATIONS

MPH% Mid-parent heterosis

GCA General combining ability
SCA Specific combining ability

INTRODUCTION

Tomato, a member of the family Solanaceae, is considered a dominant vegetable crop grown and widely consumed throughout the world. In addition, tomatoes are particularly appreciated for their nutritional properties, resulting from its content of vitamins A, C, lycopene, flavonoid and other minerals that are good for human health (Bhowmik et al., 2012; Akhtar and Hazra, 2013). Moreover, it has special taste with diverse edible methods besides its significant importance in processed products across the globe. Tomatoes are originated in Central and South America (including tropical, sub-tropical and temperate regions). It is the largest vegetable crop in the world next to potato.

In Egypt, tomatoes are cultivated in open fields and/or under greenhouse conditions. The cultivated area of tomatoes reaches 428,175 feddans, producing 6,751,856 tons with an average productivity of 15.7 tons per feddan (**FAOSTAT**, **2019**). The number of greenhouses cultivated with tomato reaches 4,100 (1,267,251 m²) producing 18,021 tons, with an average productivity ranging between 8.5 and 16.3 kg/m², according to the statistics of Ministry of Agriculture and Land Reclamation, Egypt in the 2018/2019 season.

One of the main obstacles in the cultivation of the crop in Egypt is the high cost of imported seeds. Other hindrances include the absence of good strains and high-yielding varieties that can improve the yield in breeding programs. Besides, most of the area of tomato crop nowadays is still under F_1 hybrids, which their seeds are imported form developed countries. Therefore, there is dire need for developing high yielding tomato hybrids or suitable true breeding varieties.

Several breeding methods and techniques are required for the development of new commercial varieties. Hybrid technology has become one of the main factors contributing to the significant global rise in

agricultural output over the last few decades. Exploitation of hybrid vigor and selection of parents based on combining ability have been important breeding approaches in crop improvement (Sharma et al., 2015). In Pakistan, the availability of suitable high yielding varieties not only increases the tomato yield and profits of a farmer but also fills the gap in production (Khan et al., 2017). In Egypt, few studies have been carried out for the development of indeterminate tomato lines. Consequently, new indeterminate lines or cultivars suitable for cultivation under a greenhouse with high yield and fruit quality should be developed (Mahmoud and **Khalil, 2019**). A common observation in most genotypes with superior performances in fruit yield is the high score for one or more yield component traits, including the number of fruits per plant, the number of clusters per plant, fruit weight, and the total yield per plant. The differences recorded by various authors may be due to the differences in the genetic materials and evaluated locations (Ochar et al., 2019). Tomato production faces the significant problem of low yield due to various biotic and abiotic stresses. Therefore, the introduction and evaluation of exotic tomato germplasm have become necessary to acquire elite materials to develop future breeding programs (Hassan et al., 2021).

Several exotic cultivars have excellent adaptation, whereas others are a valuable source of diversity in breeding material. Considering this, the present investigation was undertaken to:

- 1. Evaluate the performance of several exotic genotypes of tomato for growth and cultivation under our agro-climatic greenhouse conditions to determine their value for use as parents in tomato breeding programs in order to produce hybrids.
- 2. Generate information and exploitation of hybrid vigor and selection of parents based on combining ability to assess the prepotency of parents in hybrid combination. In addition, taking overview about correlation