

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / حسام الدين محمد مغربي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

ملاحظات: لا يوجد

DEVELOPMENT OF FUZZY LOGIC BASED MODEL PREDICTIVE CONTROL FOR PATH TRACKING OF AUTONOMOUS VEHICLE

By Nada Awad Sadek Mogoda

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electrical Power and Machines Engineering

DEVELOPMENT OF FUZZY LOGIC BASED MODEL PREDICTIVE CONTROL FOR PATH TRACKING OF AUTONOMOUS VEHICLE

By Nada Awad Sadek Mogoda

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in **Electrical Power and Machines Engineering**

Under the Supervision of

Kamel	Dr. Manmoud Monamed Elnaggar
Professor at	Assistant Professor at
Electrical Power and Machines Department	Electrical Power and Machines Department
Faculty of Engineering, Cairo	Faculty of Engineering, Some
University	University

Dr. Ahmed Abdel Nasser Lasheen

.....

Assistant Professor at
Electrical Power and Machines Department
Faculty of Engineering, Other
University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2022

DEVELOPMENT OF FUZZY LOGIC BASED MODEL PREDICTIVE CONTROL FOR PATH TRACKING OF AUTONOMOUS VEHICLE

By Nada Awad Sadek Mogoda

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

in

Electrical Power and Machines Engineering

Approved by the Examining Committee	
Prof. Dr. Ahmed Mohamed Ahmed Kamel,	(Thesis Main Advisor)
Prof. Dr. Abdel Latif Mohamed Ragaei Elsl	hafei , (Internal Examiner)
of Dr. Adal Abdal Manaam Elsamahy	(External Examinar)

- Professor at Helwan University

(External Examiner)

Engineer's Name: Nada Awad Sadek Mogoda

Date of Birth: 27/9/1994 **Nationality:** Egyptian

E-mail: Nadaawad.da20@gmail.com

Phone: 01060711230

Address: 179 fifth district, El Sheikh Zayed

Registration Date: 1/10/2017 **Awarding Date:**/2022 **Degree:** Master of Science

Department: Electrical Power and Machines Engineering

Supervisors:

Prof. Ahmed Mohamed Ahmed Kamel Dr. Mahmoud Mohamed Elnaggar Dr. Ahmed Abdelnasser Lasheen

Examiners:

Prof. Ahmed Mohamed Ahmed Kamel (Thesis main

advisor)

Prof. Abdel Latef Mohamed Ragaei Elshafei (Internal

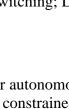
examiner)

Prof. Adel Abdel Menaam Elsamahy (External

examiner)

(Helwan University)

Title of Thesis:


Development of Fuzzy Logic Based Model Predictive Control for Path Tracking of the Autonomous Vehicle

Key Words:

Autonomous Vehicles; Model Predictive Control; Fuzzy Logic Switching; Linear Quadratic Regulator; Kalman Filter.

Summary:

The present thesis explains a path tracking control technique for autonomous ground vehicles. It develops a control technique based on the linear constrained model predictive control for the autonomous vehicle to follow a given path. The system architecture includes the; path planning model, fuzzy switching system, path tracking controller, and the nonlinear vehicle model. A detailed vehicle model is developed with three degrees of freedom and the Pacejka tires model. The fuzzy logic switching module is used for online switching between the linearized vehicle models. Further approaches are developed on the vehicle model, such as the discrete linear quadratic regulator as a tracking controller and the Kalman filter.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Date: ../../2022

Signature:

Acknowledgments

First of all, thanks to ALLAH (Almighty) who strengthens me and supports me all over my life and during this thesis work.

I would like to express my gratitude and my deep thanks to Prof. Ahmed Mohamed Kamel for his valuable suggestions, useful notices and his wise supervision.

I would like to express my thanks and admiration to Dr. Mahmoud Enaggar for his fundamental support to make this work done. His constant concern, dedicated help, and organized thoughts have helped improving and finishing this work.

I would like to express my thanks to Dr. Ahmed Lasheen for his valuable comments and support.

Finally, I wish to extend my profound gratitude to my precious family and friends especially my parents for their continous support and encouragement, through out my study years.

I am very thankful to my lovely husband for his constant encouragement, patience and support. This accomplishment would not have been possible without his concern and dedication.

Table of Contents

ACKNOWLEDG	MENTS	II
TABLE OF CONT	ΓΕΝΤS	III
LIST OF TABLES	S	VI
LIST OF FIGURE	ES	VII
NOMENCLATUR	RE	IX
ABSTRACT		XII
CHAPTER 1 : IN	TRODUCTION	1
1.1.	Background and Motivation	1
1.2.	Problem Definition	
1.3.	Literature Survey	
1.4.	Contribution and objective	
1.5.	Thesis Layout	
2.1. 2.2.	Introduction	7
	ence coordinate systems	
	fixed axis system	
	le axis system	
2.3.	Tire Modeling	
	model	
2.3.2. Dugof	f's model	
2.3.3. Pacejk	ca model	
2.4.	Types of the Vehicle Models	
	mass model	
	natic bicycle model	
•	mic bicycle model	
	wheel vehicle model	
2.5.	Complete Vehicle Model	
	natic model	
•	nic model:	
	sed tire model	
2.6.1 First to	est scenario	
	d test scenario	
2.0.2. Secon	Conclusion	
	CHICLE CONTROL AND DATH DI ANNI	

3.1.	Introduction	
3.2.	Vehicle Control Literature Survey	27
3.2.1. Latera	al control and applications	27
3.2.2. Longi	itudinal control and applications	29
3.2.3. Coup!	led longitudinal and lateral control	30
3.3.	Path Planning	31
3.3.1. Overv	view on path planning in literature	
	generation module	
3.4.	Conclusion	
	ZZY SWITCHING MODULE AND CONTROLLERS DESIGN	
4.1.	Introduction	
4.2.	System Architecture	
	plete model overview	
	rization and state space representation	
1.3.	The Gap Metric Concept	
	ground	
	netric analysis	
1.4.	The Fuzzy Logic Controller Design	
	ground	
4.4.2. Fuzzy	logic switching module	
l.5.	Discrete Linear Quadratic Regulator	43
4.5.1. Quad	ratic programming and DLQR	
	DLQR design	
.6.	Simulation Results	
4.6.1. The Γ	DLC path results	
	J-shaped path results	
1.0.2. The c	Conclusion	
5.1.	DEL PREDICTIVE CONTROL DESIGN Introduction	
5.2.	MPC Strategy	
.3.	Problem Formulation	
.4.	Linear MPC Design	
.5.	System Constraints	
5. 6.	Laguerre Functions	
.7.	MPC Tracking Controller Design	
.8.	Simulation Results	
	lation scenarios	
5.8.1.1.	The double lane change path using the MPC	
5.8.1.2.	The U-shaped path using the MPC	63
.9.	Conclusion	68
5.1. 5.2.	PLICATIONS	69 69
	ollowing Model Design	
	Model Architecture	
	lation Results of the Car Following Model	
5.3.	Vehicle Model with Kalman Filter	
	an filter Introduction	
	an Filter Design	
632 Tha 1	an Filter Design	
	an Filter Design/ehicle model overall design with KF and LQG! Simulation with Kalman filter	76

6.3.4.1. 6.3.4.2. 6.4.	DLC path results of the DLQG U-shaped path results of DLQG a Conclusion	and DMPC 81
CHAPTER 7 CO	ONCLUSION AND FUTURE WORK	87
7.1. 7.2.	Thesis Summary Future work	87 88
REFERENCES		89
APPENDIX A: A	AXIS SYSTEMS	103
	the Axis Systems the Vehicle Tires	
APPENDIX B: V	/EHICLE AND TIRE PARAMETERS	106
Definitions of	the vehicle model parameters used in the test scenarios	106

List of Tables

Table 4-1 Gap	metric	analysis	between	linearized	vehicle	models	for a	a range	of	the
heading angle.	•••••									. 38
Table 5-1 Cont										

List of Figures

Figure 2-1 ISO sign convention for the Vehicle axis system [46]	8
Figure 2-2 SAE sign convention for the Vehicle Axis System [45]	8
Figure 2-3 Earth axis system and the vehicle axis system	9
Figure 2-4 Tire forces and moments [47]	
Figure 2-5 The Longitudinal tire force vs the slip ratio [48]	11
Figure 2-6 Pacejka tire model parameters [51]	
Figure 2-7 Point mass model [54]	13
Figure 2-8 Kinematic Bicycle Model	13
Figure 2-9 Dynamic bicycle model	14
Figure 2-10 Four-Wheel vehicle model [56]	
Figure 2-11 The used Four- Wheel vehicle model	
Figure 2-12 Flow Chart of the vehicle model Calculation	20
Figure 2-13 Results of Test scenario 1 Input angular velocity	21
Figure 2-14 Results of Test scenario 1: (a) Vehicle Logitudinal and (b) Vehicle mo	otion
in the X-Y coordinate	
Figure 2-15 Results of Test scenario 1: Air Resistance force	
Figure 2-16 Results of Test scenario 1: Longitudinal Acceleration for test scenario	
Figure 2-17 Results of Test scenario 2:(a) Vehicle Steering angle changes between	
5 ° and − 5 °, (b) Vehicle Longitudinal velocity	
Figure 2-18 Results of Test scenario 2: The changes in the steering angle effect or	
(a) Lateral velocity, (b) yaw rate, and (c) heading angle	
Figure 2-19 Results of Test scenario 2: The path moved by the vehicle in test scenar	
Figure 3-1 Vehicle Yaw control system and road friction [48]	
Figure 3-2 Double lane change maneuver	
Figure 3-3 U-Shaped Path Maneuver	
Figure 4-1 Simplified architecture of the fully autonomous vehicle path trac guidance system	king
Figure 4-2 Fuzzy Logic Controller Membership functions	
Figure 4-3 Fuzzy Logic Algorithm Steps	
Figure 4-4 Vehicle responses of the DLC path using the DLQR: (a) Longitud	
velocity, (b) lateral velocity, (c) yaw rate	
Figure 4-5 Control actions: (a) Angular velocity, (b) steering angle	
Figure 4-6 Vehicle heading angle of the DLC path using the DLQR	
Figure 4-7 The vehicle path following behavior with the DLQR as a tracking contr	
Figure 4-8 (a) Vehicle longitudinal velocity for the U-shaped path, (b) lateral velocity	
(c) vehicle yaw rate	
Figure 4-9 Control actions: (a) The vehicle angular velocity, (b) The vehicle stee	
angle	_
Figure 4-10 Vehicle heading angle of the U-shaped path using the DLQR with	
without fuzzy switching module	
Figure 4-11 Vehicle path tracking behavior: (a) The DLQR with the fuzzy switch	hing
module, (b) DLQR without the fuzzy switching module and the reference U-shaped	
Figure 5-1 The overall Control Algorithm.	59

Figure 5-2 The Longitudinal Velocity of the DLC Path	61
Figure 5-3 Vehicle Lateral Velocity and yaw rate of the DLC path	
Figure 5-4 (a) Vehicle angular velocity, (b) Vehicle Steering angle for the DLC pat	
Figure 5-5 Vehicle Heading angle for the DLC path	
Figure 5-6 Vehicle model path tracking behavior for the DLC path, using the	
controller with/without fuzzy logic system	
Figure 5-7 Vehicle longitudinal velocity for U-shaped path	
Figure 5-8 (a) Vehicle lateral velocity, (b) Yaw rate for the U-shaped path	
Figure 5-9 Vehicle heading angle for the U-shaped path	
Figure 5-10 (a) Vehicle angular velocity, (b) and steering angle for the U-shaped	
Figure 5-11 The rate of change of the steering angle for the U-shaped path	66
Figure 5-12 Vehicle reference U-shaped path and the actual path with the MPC	
fuzzy logic module	
Figure 5-13 Vehicle reference U-shaped path and the actual path of the MPC with	ithout
the fuzzy logic module	67
Figure 6-1 Car following model, leader car and a follower car. [83]	70
Figure 6-2 The car following model simplified architecture	71
Figure 6-3 The longitudinal velocity of the Autonomous vehicle	72
Figure 6-4 Steering commands of the car with the driver to the autonomous car	
Figure 6-5 The Angular velocity input to the car with the driver	73
Figure 6-6 Car following model Reference path from the car with the driver	
Figure 6-7 Car model simulation results of the steering angle of the Autonomous vo	ehicle
and the reference driver vehicle.	74
Figure 6-8 The car following model Path of the autonomous vehicle for the tw	o test
scenarios; DMPC with fuzzy logic switching module, and the DMPC without the	fuzzy
logic module	74
Figure 6-9 Complete system architecture with Kalman filter	77
Figure 6-10 Vehicle Longitudinal speed	78
Figure 6-11 Vehicle Lateral velocity, yaw rate and steering angle	79
Figure 6-12 (a) Vehicle Angular velocity, (b) Vehicle heading angle	79
Figure 6-13 DLC path of the Vehicle motion for DLQG and DMPC	
Figure 6-14 Outputs errors for the DMPC and the DLQG controller	
Figure 6-15 The longitudinal velocity for the U-shaped path on the DMPC and the D)LQG
Figure 6-16 The vehicle steering angle	
Figure 6-17 The vehicle heading angle	82
Figure 6-18 The angular velocity control action	
Figure 6-19 Vehicle lateral velocity and the yaw rate	83
Figure 6-20 Change in the steering angle	
Figure 6-21 The respone of the U-shaped vehicle actual path following of the DMP	_
the DLQG vs the reference path	
Figure 6-22 The vehicle outputs errors responses for the DLQG and the DMPC tra	_
controllers	84

Nomenclature

Symbols:

$F_{\mathcal{Y}}$	Lateral force of the vehicle
F_{χ}	Longitudinal force of the vehicle Lateral stiffness of the tires
C_{α}	Longitudinal stiffness of the tires
C_{σ}	
α	Side slip angle
R_{eff}	Effective wheel radius,
ω	Angular velocity
V_{x}	Linear velocity
<u>μ</u>	Friction coefficient
F_{Z}	Vertical load of the vehicle
m	Mass of the vehicle
g	Gravitational acceleration
X	Coordinate system in the reference planar frame in the x direction
Y	Coordinate system in the reference planar frame in the y direction
φ	Heading angle
β	Slip angle
v	Magnitude of the velocity vector.
l_r	Rear distances from the center of mass.
l_f	Front distances from the center of mass
δ	Steering angle
E	Force generated at the wheel contact surface with the ground in the x-
$F_{x,i}$	axis, where <i>i</i> indicates front or rear wheel
$F_{y,i}$	Force generated at the wheel contact surface with the ground in the y-
1 y,l	axis direction, where <i>i</i> indicates front or rear wheel
V_g	Vehicle speed at the car center of gravity
α_f	Vehicle front slip angle
I_{Z}	Moment of inertia around the z-axis
$V_{wx,f}$	Linear velocities of the wheels front and rear, in the x-axis direction
$V_{wy,f}$	Linear velocities of the wheels front and rear, in the y-axis direction
χ̈́	Velocity component in the vehicle frame in the x-axis direction
ý	Velocity component in the vehicle frame in the y-axis direction
$F_{x,r}$	Forces in the x directions for the rear wheels
F_{yf}	Forces in the y directions for the front wheels
v_x	Longitudinal velocity,
v_y	Lateral velocity,
r	Yaw rate
a_x	Longitudinal accelerations of the vehicle
a_{ν}	Lateral accelerations of the vehicle
J_z	Vehicle yaw inertia
b_f and b_r	Front and rear track width.
ν_f and ν_r	1 fort and fear track within

$\begin{array}{c} c_W & \text{Aerodynamic drag coefficient} \\ \rho & \text{Air density} \\ A & \text{Frontal area of the vehicle} \\ \lambda_i & \text{Slipe ratio of the ith wheel} \\ F_{zi} & \text{Normal force of the ith wheel} \\ h & \text{Height of the center of gravity of the vehicle from the ground} \\ \omega_i & \text{Angular velocity of the ith wheel} \\ x & \text{State space vector} \\ u & \text{State space output vector} \\ y & \text{State space output vector} \\ Q_i \text{ and } C_i & \text{Discrete state space model matrices} \\ Q_i \text{ and } R_i & \text{MPC tracking controller design parameters} \\ K_{dlqr} & \text{Gain matrix of the DLQR} \\ N_p & \text{Prediction horizon of the MPC} \\ N_c & \text{Control horizon of the MPC} \\ X_{ref_1} & \text{Reference states at sample time } i \\ u_{ref_1} & \text{System inputs reference signals} \\ N & \text{Number of the Laguerre terms} \\ a & \text{Pole of the discrete-time Laguerre network} \\ \eta & \text{Laguerre parameter vector} \\ u_{min} \text{ and } & \text{Minimum and the maximum input values} \\ u_{max} & \\ \Delta u_{min} & \text{and } & \text{Minimum and the maximum values of the rate of change of the inputs} \\ \lambda_{max} & \\ R_L & \text{Optimization problem input increments} \\ L(i) & \text{Laguerre functions at time sample i} \\ N_S & \text{States number} \\ \omega_{min} & \text{Minimum value of the angular velocity} \\ \end{array}$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$V_{\rm w1}$	Speed of the vehicle wheel number 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	c_W	Aerodynamic drag coefficient
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ho	Air density
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A	Frontal area of the vehicle
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F_{zi}	Normal force of the ith wheel
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	h	Height of the center of gravity of the vehicle from the ground
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ω_i	Angular velocity of the ith wheel
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	x	State space vector
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	и	State space input vector
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	У	State space output vector
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A_i , B_i , and C_i	Discrete state space model matrices
$\begin{array}{c c} N_p & \text{Prediction horizon of the MPC} \\ N_c & \text{Control horizon of the MPC} \\ X_{ref_i} & \text{Reference states at sample time } i \\ u_{ref_i} & \text{System inputs reference signals} \\ N & \text{Number of the Laguerre terms} \\ a & \text{Pole of the discrete-time Laguerre network} \\ \eta & \text{Laguerre parameter vector} \\ u_{min} \text{ and } & \text{Minimum and the maximum input values} \\ u_{max} & \\ \Delta u_{min} & \text{and } & \text{Minimum and the maximum values of the rate of change of the inputs} \\ \Delta u_{max} & \\ x_{min} & \text{and } & \text{State's minimum and the maximum values} \\ x_{max} & \\ R_L & \text{Optimization problem input increments} \\ L(i) & \text{Laguerre functions at time sample i} \\ N_{in} & \text{Inputs number in the state space representation} \\ N_S & \text{States number} \\ \omega_{min} & \text{Minimum value of the angular velocity} \\ \end{array}$	Q_i and R_i	MPC tracking controller design parameters
$\begin{array}{c c} N_p & \text{Prediction horizon of the MPC} \\ N_c & \text{Control horizon of the MPC} \\ X_{ref_i} & \text{Reference states at sample time } i \\ u_{ref_i} & \text{System inputs reference signals} \\ N & \text{Number of the Laguerre terms} \\ a & \text{Pole of the discrete-time Laguerre network} \\ \eta & \text{Laguerre parameter vector} \\ u_{min} \text{ and} & \text{Minimum and the maximum input values} \\ u_{max} & & \\ \Delta u_{min} & \text{and} & \text{Minimum and the maximum values of the rate of change of the inputs} \\ \Delta u_{max} & & \\ x_{min} & \text{and} & \text{State's minimum and the maximum values} \\ x_{max} & & \\ R_L & \text{Optimization problem input increments} \\ L(i) & \text{Laguerre functions at time sample i} \\ N_{in} & \text{Inputs number in the state space representation} \\ N_S & \text{States number} \\ \omega_{min} & \text{Minimum value of the angular velocity} \\ \end{array}$	K_{dlgr}	Gain matrix of the DLQR
$\begin{array}{c c} N_c & \text{Control horizon of the MPC} \\ X_{ref_i} & \text{Reference states at sample time } i \\ u_{ref_i} & \text{System inputs reference signals} \\ N & \text{Number of the Laguerre terms} \\ a & \text{Pole of the discrete-time Laguerre network} \\ \mu_{a} & \text{Laguerre parameter vector} \\ u_{min} & \text{and} & \text{Minimum and the maximum input values} \\ u_{max} & \text{Minimum and the maximum values of the rate of change of the inputs} \\ \Delta u_{min} & \text{and} & \text{State's minimum and the maximum values} \\ x_{max} & \text{State's minimum and the maximum values} \\ X_{max} & \text{R}_L & \text{Optimization problem input increments} \\ L(i) & \text{Laguerre functions at time sample i} \\ N_{in} & \text{Inputs number in the state space representation} \\ N_S & \text{States number} \\ \omega_{min} & \text{Minimum value of the angular velocity} \\ \end{array}$		Prediction horizon of the MPC
$\begin{array}{c c} u_{ref_i} & \text{System inputs reference signals} \\ N & \text{Number of the Laguerre terms} \\ a & \text{Pole of the discrete-time Laguerre network} \\ \eta & \text{Laguerre parameter vector} \\ u_{min} \text{ and} & \text{Minimum and the maximum input values} \\ u_{max} & & & \\ \Delta u_{min} & \text{and} & \text{Minimum and the maximum values of the rate of change of the inputs} \\ \Delta u_{max} & & & \\ x_{min} & \text{and} & \text{State's minimum and the maximum values} \\ x_{max} & & & & \\ R_L & \text{Optimization problem input increments} \\ L(i) & \text{Laguerre functions at time sample i} \\ N_{in} & \text{Inputs number in the state space representation} \\ N_S & \text{States number} \\ \omega_{min} & \text{Minimum value of the angular velocity} \\ \end{array}$	-	Control horizon of the MPC
Number of the Laguerre terms a Pole of the discrete-time Laguerre network η Laguerre parameter vector u_{min} and Minimum and the maximum input values Δu_{max} Δu_{min} and Minimum and the maximum values of the rate of change of the inputs Δu_{max} x_{min} and State's minimum and the maximum values x_{max} R_L Optimization problem input increments $L(i)$ Laguerre functions at time sample i N_{in} Inputs number in the state space representation N_S States number ω_{min} Minimum value of the angular velocity	X_{ref_i}	Reference states at sample time <i>i</i>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	u_{ref_i}	System inputs reference signals
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Number of the Laguerre terms
u_{min} and u_{max} Δu_{min} and Δu_{min} and Minimum and the maximum values of the rate of change of the inputs Δu_{max} x_{min} and State's minimum and the maximum values x_{max} R_L Optimization problem input increments $L(i)$ Laguerre functions at time sample i N_{in} Inputs number in the state space representation N_S States number ω_{min} Minimum value of the angular velocity	а	Pole of the discrete-time Laguerre network
u_{max} Δu_{min} and Minimum and the maximum values of the rate of change of the inputs Δu_{max} x_{min} and State's minimum and the maximum values x_{max} R_L Optimization problem input increments $L(i)$ Laguerre functions at time sample i N_{in} Inputs number in the state space representation N_S States number ω_{min} Minimum value of the angular velocity	η	Laguerre parameter vector
Δu_{min} and Minimum and the maximum values of the rate of change of the inputs x_{min} and State's minimum and the maximum values x_{max} R_L Optimization problem input increments $L(i)$ Laguerre functions at time sample i N_{in} Inputs number in the state space representation N_S States number ω_{min} Minimum value of the angular velocity	u_{min} and	Minimum and the maximum input values
Δu_{max} x_{min} and State's minimum and the maximum values x_{max} R_L Optimization problem input increments $L(i)$ Laguerre functions at time sample i N_{in} Inputs number in the state space representation N_S States number ω_{min} Minimum value of the angular velocity	u_{max}	
x_{min} and State's minimum and the maximum values x_{max} R_L Optimization problem input increments $L(i)$ Laguerre functions at time sample i N_{in} Inputs number in the state space representation N_S States number ω_{min} Minimum value of the angular velocity	Δu_{min} and	Minimum and the maximum values of the rate of change of the inputs
x_{max} R_L Optimization problem input increments $L(i)$ Laguerre functions at time sample i N_{in} Inputs number in the state space representation N_S States number ω_{min} Minimum value of the angular velocity	Δu_{max}	
R_L Optimization problem input increments $L(i)$ Laguerre functions at time sample i N_{in} Inputs number in the state space representation N_S States number ω_{min} Minimum value of the angular velocity	x_{min} and	State's minimum and the maximum values
$L(i)$ Laguerre functions at time sample i N_{in} Inputs number in the state space representation N_S States number ω_{min} Minimum value of the angular velocity	x_{max}	
N_{in} Inputs number in the state space representation N_S States number ω_{min} Minimum value of the angular velocity	R_L	
N_S States number ω_{min} Minimum value of the angular velocity	L(i)	
ω_{min} Minimum value of the angular velocity	N_{in}	Inputs number in the state space representation
	N_S	
Maximum value of the angular velocity	ω_{min}	
770000	ω_{max}	Maximum value of the angular velocity
δ_{min} Stearing angle minimum value		Stearing angle minimum value
δ_{max} Stearing angle maximum value	δ_{max}	
$\Delta\delta$ Rate of change of the steering angle	Δδ	
$\Delta \delta_{max}$ Maximum value of the rate of change of the steering angle	$\Delta\delta_{max}$	
$\Delta \delta_{min}$ Minimum value of the rate of change of the steering angle		Minimum value of the rate of change of the steering angle