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Abstract

Recently, the increase in the number of patients with motor disabilities has become a
noticeable phenomenon all over the world. The reasons for this increase are due to the emergence
of many diseases that cause motor nerves to atrophy and thus prevent the motor limbs from
performing their vital role. This injury extends to all parts of the body and causes complete
paralysis and only the neurons that control eye movement survive. Hence, patients do not have a
way to communicate with their surrounding environment except through the movement of their
eyes.

The human-computer interface (HCI) has emerged and become a new communication way
and support tool for these patients. It allows a communication between the user and the computer
that depends on the analysis of voluntary, controlled bio-signals to choose a specific action,
execute, and display it on the computer screen. HCI systems are based on determining eye
movement directions from Electrooculogram.

An electrooculogram (EOG) records eye movement as signals produced from variation in
the polarity of the nerve of the eye. EOG recording is performed by a set of electrodes placed
horizontally and vertically on the controlling muscles of the eye. The relationship between the
electrooculography signals and eye movement is linear. The waveform of the electrooculography
signal is completely in line with the eye movement, so it is easy to analyze and identify.

This thesis proposes a HCI writing system based on classifying EOG signals by a proposed
deep learning model. This system helps all patients with diseases that cause severe motor disability
and paralysis in all their limbs. In addition, it provides them with a new way of communicating
with their external environment without always needing a companion. The proposed system
detects six different directions of eye movement: up, down, right, left, center, and blinking, in
addition, using them to select letters, write messages from a virtual keyboard, and vocalize them
as well.

The vertical and horizontal EOG signals are filtered from noise using a second-order band-
pass filter. Two different approaches have been considered to classify the signals. The first
approach depends on extracting the statistical and morphological features from the filtered signals
and concatenating them in a final feature vector that represents an entry for six machine learning
classifiers. The six classifiers are Linear Discriminant Analysis (LDA), Support Vector Machines
(SVM), Multinomial Logistic Regression (MLR), K Nearest Neighbor (KNN), Decision Trees and
Naive Bayes (NB). The second approach relies on concatenating the horizontal and vertical filtered
EOG signals into a vector as input to five deep learning models: Convolutional Neural Network
(CNN), VGG Network, Inception Network, Residual Network, and ResNet-50 Network.
Experiments have been conducted on two datasets: public small dataset and PSL-IEOG2 dataset



which is a large dataset collected by us using the PSL-IEOG2 device dedicated to measure eye
signals.

The experimental results reveal that the inception deep learning model outperforms all the
other considered models and traditional classifiers with an overall accuracy of 98.8%. The user
interface has designed consisting of four forms: the first is the opening form and displays all the
possibilities offered, the second is a virtual keyboard for writing messages, the third includes the
daily activities which patients are accustomed to use, and the last one contains the trending news
circulating on the most famous news sites. Finally, the processing time to complete a selection in
any form is only one second.
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