

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / حسام الدين محمد مغربي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

ملاحظات: لا يوجد

كليه العلوم – قسم الكيمياء

New methods for the assessment of selenium in environmental samples

A Thesis Submitted for the degree of Master of Science As a partial fulfilment for requirements of the master of Science

By
Heba Fawzy Ragheb
B.Sc. (Chemistry)
2008

Prof. Dr. Ashraf A. Mohamed Professor of Analytical Chemistry. Faculty of Science, Ain Shams University.

Dr. Abdel-Nabi Mohamed Salem Assistant Professor of inorganic chemistry Faculty of Science, Ain Shams University.

(2022)

كليه العلوم – قسم الكيمياء

New methods for the assessment of selenium in environmental samples

By

Heba Fawzy Ragheb

Thesis Advisors	Approved
Prof. Dr. Ashraf A. Mohamed	
Professor of Analytical Chemistry, Faculty of Science	, Ain Shams University
Dr. Abdel-Nabi Mohamed Salem	•••••
Assist. Prof. of inorganic chemistry, Faculty of Science	ce, Ain Shams University

Head of Chemistry Department

Prof. Dr. Ayman Ayoub Abdel-Shafi

كليه العلوم – قسم الكيمياء

Student Name: Heba Fawzy Ragheb Abdel Sadek

Scientific Degree: M.Sc.

Faculty Name: Faculty of Science – Ain Shams University

Graduation Year: 2008

Granting Year: 2022

Acknowledgment

First and foremost, I would like to thank my supervisor Prof.

Ashraf A. Mohamed for guiding me during the course of my master thesis. I am very grateful for the time he has dedicated to me, his suggestions, and useful discussions. Truly he is the major source for almost all I know in analytical chemistry. I would like to thank Dr. Abel-Nabi Mohamed and Dr Samah Ali for their patience, support and kind guidance during the work.

Most importantly, I would like to thank my Mum, Dad and my husband for their constant love and support. Their faith in me and support had made everything possible. I would also like to thank another family member who played a significant role in my life, my brother and my sisters.

Last but not least, my great and deep gratitude for my friends, and for all people who helped me to finish this work.

Aim of the work

Aim of the work

The current research aims to use digital image-based analysis in conjunction with catalytic kinetic methods to assess ultra-trace quantities of tetravalent selenium in natural and heavily contaminated wastewater.

Summary

Summary

Selenium is an essential element for the proper functioning of the human body. It plays a crucial role in metabolism and thyroid function and helps protect the body from oxidative stress damage. Therefore, the highly sensitive assessment of selenium in waters and food samples is of great importance for environmental, biochemical and health concerns. Selenium assessment based on its catalytic effect of the reduction of methylene blue by sulfide ion has been reported using the fixed time and induction period monitoring methods. However, the very poor precision and relatively limited sensitivity prompted us to develop a new highly sensitive, precise and validated initial rate kinetic method for selenium assessment based on the methylene blue- sulfide ion reaction. The ofreaction progress was traced spectrophotometrically and with a digital camera. Various reaction variables affecting the methylene blue decolorization were thoroughly investigated, including: reagents concentrations, order of addition, mixing and standing times, pH, temperature, ionic strength, and the surfactant type and concentration. A monovariate optimization procedure was followed for the optimization of reaction variables and the optimized conditions have been included in the recommended procedure. Cetyltrimethylammonium bromide (CTAB) greatly enhanced the

selenohydrosulfide reduction of methylene blue near micellar concentrations, lowered the linear range of Se determination and boosted the analytical sensitivity of the developed method. The concentration effect of polysulfide or selenohydrosulfide on the micellar surface caused micellar catalysis, i.e., an increase in reaction rate. Procedures for dealing with various possible interfering species were investigated. The findings of this investigation allowed for a higher sensitivity, higher selectivity, lowered detection and quantification limits, and improved precision. The developed method has been successfully applied to natural, wastewaters, and food samples with excellent recovery results and excellent harmony with the standard AOAC method. Statistical treatment of analytical data showed the absence of any systematic errors and revealed the high accuracy and precision of the developed method.

Table of contents

Table of contents

Content list	
	No.
Aim of the work	2
Summary	4
Table of contents	7
List of Abbreviations	10
List of Figures	13
List of Tables	17
1.Introduction	19
1.1.Methods Based on Chemical Kinetics	25
1.2.Classifying Chemical Kinetic Methods	25
1.3.Sensitivity and Detection Limits	
1.4.Digital Image Based analysis	29
1.5.Color models and color spaces	
1.6.RGB color space	
1.7.Digital camera and image formation process	32
2.Materials and Methods	35
2.1.Apparatus and software	
2.2.Reagents and solutions	
2.2.1.General Reagents	
2.2.1.1.Selenium (IV) stock solution	
2.2.1.2. Methylene Blue solution	
2.2.1.3.Sulfide-sulfite reducing solution	
2.2.1.4.Disodium EDTA-triethanolamine masking	
solution	
2.2.1.5.Formaldehyde solution	
2.2.1.6.Borate buffer solution	39
2.2.1.7.Cetrimonium bromide (CTAB) surfactant	40
solution	
2.3.Recommended procedure for initial rate	40
measurements	
3.Result and Discussion	43

3.1.Absorption spectra	43
3.2.Effect of pH	44
3.3.Effect of CTAB concentration	47
3.4.Methylene blue concentration	49
3.5.Effect of reducing agents concentrations	51
3.6.Effect of Formaldehyde concentration	54
3.7.Effect of EDTA concentration	56
3.8.Effect of Triethanolamine concentration	57
3.9.Effect of temperature	58
3.10.Effect of the order of addition	59
3.11.Effect of Diverse Ions	60
3.12.Combining digital imaging with kinetic catalytic	61
methods of analysis for methylene blue reaction	
3.13.Calibration graph and detection limits	77
3.14. The Proposed Reaction Mechanism	79
4.Applications	81
5.Conclusions	85
References	87
Arabic summary	107

List of Abbreviations

List of Abbreviations

Abbreviations	Defination	
AOAC	Association of Official Analytical Chemists	
АРНА	American Public Health Association	
ATSDR	Agency for Toxic Substances and Disease Registry	
CCD	Charge Coupled Device	
CMOS	Complementary metal oxide semiconductor	
CMYK	Cyan, Magenta, Yellow, and Key Black model	
СТАВ	Cetyltrimethylammonium bromide	
DIBA	Digital Image-based analysis	
EDTA	Ethylenediaminetetraacetic acid	
FDA	Food and Drug Administration office	
НСНО	Formaldhyde	
HCL	Hydrochloric acid	
HG-AAS	Hydride generation atomic absorption spectrometry	
HG-AFS	Hydride generation atomic fluorscence spectrometry	
HS	Hydrosulfide	
ICP-MS	Inductively coupled plasma-mass spectrometry	
ICP-OES	Inductively coupled plasma-optical emission spectrometry	