

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

The Impact of High Dose Vitamin C on the Clinical Outcomes of Critically Ill Patients with Acute Respiratory Distress Syndrome

A Thesis

Submitted in Fulfillment of Requirements for the

Philosophy degree

In Pharmaceutical Sciences

Clinical Pharmacy

By

Nada Hazem Farrag

(M.Sc., Pharmaceutical Sciences)
Assistant lecturer, Clinical Pharmacy Department
Faculty of Pharmacy, NewGiza University

Under Supervision of

Dr. Lamia Mohamed El Wakeel, PhD

Professor and Head of Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University

Dr. Ahmed Mahmoud Abdelhafeez, PhD

Professor of Chest Diseases, Faculty of Medicine, Cairo University, Cairo, Egypt

Dr. Mona Farag Schaalan, PhD

Professor and Head of Clinical Pharmacy Department, Faculty of Pharmacy, Misr International University

Acknowledgement

In the Name of Allah, the most Gracious the most Merciful

Thanks to God, all praise to Allah for the strength and his blessing in completing this thesis

Special appreciation goes to my supervisor **Dr. Lamiaa El Wakeel**, Professor and head of Clinical Pharmacy, Ain Shams University for her continuous support. Her constructive comments, attention to details and suggestions throughout the practical and thesis work have contributed to the success of this research.

I would like to express my deepest gratitude to **Dr**, **Ahmed AbdelHafeez**, Professor of Chest Disease, faculty of Medicine, Cairo University, for his continuous support, technical assistance in the hospital and medical knowledge regarding this topic.

I also would like to express my deepest gratitude to **Dr. Mona Schalaan**, professor and head of Clinical Pharmacy and Pharmacy Practice Department, MIU, for her continuous encouragement, creativity, constant support and details-oriented suggestions throughout the thesis work.

Sincere thanks and deepest gratitude go to my beloved parents, brother, husband and grandmother for their endless love, prayers, help and continuous encouragement and support.

Sincere thanks to National Center for Allergy and Chest Diseases in Embaba for allowing me to complete my practical part of the thesis within their premises.

My deepest love and thanks for my family, friends and colleagues for their kindness and support the past years.

This work is dedicated to My sunshine, My son Youssef

You have made me stronger, better and more fulfilled than I could have ever imagined

My Mom & My Dad Dr. Hazem Farrag & Dr. Manar Tawfek

Who have always loved me unconditionally and whose good examples have taught me to work hard for the things that I aspire to achieve

My brother

Eng. Ahmed Farrag

My cheerleader for always bracing me and being at my back

My Husband

Dr. Ahmed Hisham

Who has been a constant source of support and encouragement.

I am truly thankful for having you in my life

LIST OF CONTENTS

	Page
LIST OF ABBREVIATIONS	II
LIST OF FIGURES	${f V}$
LIST OF TABLES	VII
ABSTRACT	VIII
INTRODUCTION	1
LITERATURE REVIEW	4
1- ARDS	4
2- Oxidative Stress	27
3- Oxidative Stress in ARDS	34
4- Vitamin C	39
5- The role of Clinical Pharmacist in Patient Care	49
Literature conclusion	51
AIM OF THE STUDY	53
PATIENTS & METHODS	54
RESULTS	66
DISCUSSION	85
LIMITATIONS	90
RECOMMENDATIONS	91
WORK PERSPECTIVE	92
SUMMARY	93
REFERENCES	95
ARABIC SUMMARY	-

LIST OF ABBREVIATIONS

	LIST OF ADDICEVIATIONS
Abbreviation	Full term
ARDS	Acute Respiratory Distress Syndrome
AA	Amino Acids
AECC	American-European Consensus Conference
ALI	Acute Lung Injury
ALTA	Albuterol for the Treatment of Acute Lung Injury
AP-1	Activator protein 1
APACHE	Acute Physiology and Chronic Health Evaluation
ARE	Antioxidant Response Element
ARE	Antioxidant response element
AST	Aspartate aminotransferase
ALT	Alanine transaminase
BAL	Bronchoalveolar Lavage
BALF	Bronchoalveolar Lavage Fluid
BALTI-2	Beta-Agonist Lung injury Trial-2
BH4	Tetrahydrobiopterin
BMI	Body Mass Index
BUN	Blood Urea Nitrogen
bZIP	Basic region/leucine zipper
CBC	Complete Blood Count
CMV	Cytomegalovirus
CNC	Cap'n'collar
CNS	Central Nervous System
CO ₂	Carbon dioxide
COPD	Chronic Obstructive Pulmonary Disease
CT	Computerized Tomography
CVP	Central Venous Pressure
DAD	Diffuse Alveolar Damage
DHA	Dehydroascorbic acid
DNA	Deoxyribonucleic acid
eNOS	Endothelial Nitric Oxide Synthase
FiO ₂	Fraction of inspired oxygen
•	

Abbreviation	Full term
GLUT	Glucose transporters
GM-CSF	Granulocyte-macrophage colony-stimulating factor
GPx	Glutathione Peroxidase
GRa	Glucocorticoid receptor alpha
GSH	Reduced Glutathione
H_2O_2	Hydrogen Peroxide
HDIVC	High dose IV Vitamin C
HNE	4 Hydroxy nonenal
HRP	Horseradish peroxidase
ICU	Intensive Care Unit
IgA	Immunoglobulin A
IL-1	Interleukin 1
IL-6	Interleukin 6
IL-8	Interleukin 8
iNO	Inhaled nitric oxide
INR	International Normalized Ratio
iNOS	Inducible Nitric Oxide Synthase
IV	Intravenous
K	Potassium
Keap1	Kelch-like ECH-associated protein 1
kPa	Kilopascal
LC-MS-MS	Liquid Chromatography with tandem mass spectrometry
LDIVC	Low dose IV Vitamin C
LDL	Low-Density Lipoprotein
LMWT	Low Molecular Weight
LPO	Lipid Peroxidation
MDA	Malondialdehyde
MDI	Metered Dose Inhaler
MPO	Myeloperoxidase
MV	Mechanical Ventilation
Na	Sodium
NAC	N-acetylcysteine

Abbreviation	Full term
NADPH	Nicotinamide Adenine Dinucleotide Phosphate
NETs	Neutrophil Extracellular Traps
NF-kB	Nuclear factor-Kappa B
NGT	Nasogastric tube
NHLBI	National Heart, Lung, and Blood Institute
NMBAs	Neuromuscular blocking agents
NNT	Number needed to treat
NO	Nitric Oxide
NRf2	Nuclear factor erythroid 2- related factor
ОН	Hydroxyl Radical
OTC	Over the Counter
PaO ₂	Partial oxygen pressure
PCWP	Pulmonary capillary wedge pressure
PEEP	Positive end-expiratory pressure
PF	PaO ₂ /FiO ₂
PGE1	Prostaglandin E1
PH	Potential of Hydrogen
PO	Per Oral
Pplat	Plateau Pressure
RAs	Retinoic acids
RCT	Randomized Controlled Trial
ROS	Reactive Oxygen Species
Scr	Serum Creatinine
SOD	Superoxide Dismutase
SP-1	Specificity protein 1
SVCTs	Sodium Ascorbate cotransporters
TBARS	Thiobarbituric acid reactive species
TIIP	Type II Pneumocytes
TMP	Tetramethylbenzidine
TNF α	Tumor Necrosis Factor Alpha
VTE	Venous Thromboembolism

LIST OF FIGURES

Figure no.	Title	Page
1.1.	Healthy Lungs and Exudative Phase of ARDS	11
1.2.	The Proliferative & fibrotic stages of ARDS	12
1.3.	Radiograph of chest for ARDS	13
1.4.	Histology early exudative phase	15
1.5.	Histology showing type II pneumocytes	15
1.6.	Histology showing late proliferative phase	16
1.7.	Histology showing late fibrotic phase	16
1.8.	The history of ALI/ARDS	18
1.9.	The role of Nrf2 in the pathogenesis of pulmonary diseases	37
1.10.	Ascorbic acid synthesis	41
1.11.	Ascorbic acid metabolism	44
2.1.	Human Nrf2 standard curve	63
2.2.	Human IL8 standard curve	63
2.3.	Human Vitamin C standard curve	64
3.1.	Patients' flow chart	67
3.2.	Vitamin C levels in test and control after treatment	71
3.3.	Nrf2 levels in test and control after treatment	72
3.4.	IL8 levels in test and control after treatment	73
3.5.	Percentage change in Vitamin C after treatment	74

Figure no.	Title	Page
3.6.	Percentage change in IL8 after treatment	75
3.7.	Percentage change in Nrf2 after treatment	76
3.8.	PaO ₂ /FiO ₂ , values in test and control groups after treatment	78
3.9.	Percentage change in PaO ₂ /FiO ₂ treatment	79
3.10.	Kaplan-Meier curves for comparison of time effects	84