

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / حسام الدين محمد مغربي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

ملاحظات: لا يوجد

"Evaluation Of Innovative 3D Printed Space Maintainer Versus Conventional One"

A Thesis Submitted to Faculty of Dentistry,

Ain shams University for partial fulfillment of the Master degree in

Pediatric Dentistry

Submitted by:

Farah Ahmed Barakat

B.D.S 2014

Ain Shams University

Faculty of Dentistry
Ain shams University
2022

Supervisors

Dr. Islam Tarek Abbas

Professor and Head of Orthodontic Department
Faculty of Dentistry
Ain Shams University

Dr. Gehan Gaber

Associate Professor, Pediatric Dentistry and Dental Public Health Department

Faculty of Dentistry

Ain Shams University

Acknowledgement

My sincere thanks go to Professor *Dr. Islam Tarek Hassan* Professor & Head of the Orthodontic Department, Faculty of Dentistry, Ain-Shams University, for his professional guidance, valuable insight and continuous support & reassurance throughout the course of this project.

I wish to express my deep appreciation and gratitude to *Dr. Gehan Gaber Allam*, Associate Professor of Pediatric Dentistry & Dental Public Health, Faculty of Dentistry, Ain-Shams University, for her scientific advice, constant help and for her huge efforts in accomplishing this research.

I am also grateful to all my professors and colleagues of the Pediatric dentistry and Public Health Department, Faculty of Dentistry, British University in Egypt and Ain Shams University for their great support and cooperation. who didn't hesitate to help me with my research.

My due thanks go to the children participating in this study and their parents for their cooperation and trust.

Dedication

To my Mother,

Thank you for your never ending love & support. Thank you for believing in me and always pushing me forward.

To my Father and Grandmother,

For always encouraging and helping me to go on for a better future.

To my Husband,

Without your patience, support and encouragement, I could not have achieved this.

To my Sister and Brother,

For your constant love, help and support.

To my lovely Son Ali,

You inspire me to be a better person as your smile brings the best out of me.

List of contents

List of Figures	i
List of Tables	v
List of abbreviations	vii
Introduction	1
Review of Literature	3
Aim of the Study	29
Subjects, Materials & Methods	30
Results	67
Discussion	82
Summary	94
Conclusion	96
Recommendations	97
References	98
Appendix I	119
Appendix II	123
Appendix III	126
Appendix IV	137
Arabic Summary	Error! Bookmark not defined

List of Figures

Figure No.	<u>Title</u>	Page No.
(1)	Pre-operative photos showing badly decayed bilateral lower first primary molars	32
(2&3)	Bilateral periapical radiographs showing decayed lower first primary molars beyond repair	32
(4)	Band and loop SM after cementation	36
(5)	Administration of the case	37
(6)	Intraoral Scanner	37
(7)	Scanned mandibular arch	38
(8)	Appliance data entry	38
(9)	Creating shell of the SM	39
(10)	Choosing shell parameters	39
(11&12)	Drawing spline of the shell	40
(13)	C-shaped Band design	41
(14)	Creating bar of the SM	41
(15)	Drawing spline of the bar	42

(16)	Choosing bar parameters	42
(17)	Bar adjusted on the shell	43
(18)	Finalization of the bar	43
(19)	Combining the shell and the bar	44
(20)	Smoothing the designed SM	44
(21)	Exporting the designed SM	45
(22)	Rapid shape 3D printer	45
(23)	Orthorigid material	45
(24)	Rubber dam field isolation	46
(25)	Acid etchant application	47
(26)	Application of bonding agent to the etched enamel surface	47
(27)	Light curing	48
(28)	3D printed SM cemented	48
(29)	3D printed SM intraorally	48
(30)	3D printed SM showing gingival clearnace	48
(31&32)	Bilateral SMs intraorally	49

(33)	Light microscope	55
(34)	Flow chart illustrating the In Vitro groups for fracture resistance test.	56
(35)	Flow chart illustrating the In Vitro groups for shear bond strength test.	57
(36)	Natural teeth mounted in nissin cast model with bilateral tooth loss	58
(37)	Tooth mounted in acrylic mold	58
(38)	B&L SM	59
(39)	Model mounted to 3-shape scanner	60
(40)	ScanIt manager software	60
(41)	Scanned model	60
(42)	Steps of cementation of the 3D printed SM on cast	61
(43)	Cemented 3D printed SM	62
(44)	Bilateral SMs on the model	62
(45)	Universal testing machine	63
(46)	Axial loading on the specimens	63
(47)	Modified metal band	64

(48)	Modified 3D printed band	64
(49)	Force application to the specimens	65
(50)	Pie chart showing percentage of sex distribution	68
(51)	Bar chart showing clinical outcome in different groups	69
(52)	Bar chart showing failure types in different groups	70
(53)	Bar chart showing average plaque index different groups	72
(54)	Line chart showing average plaque index in different intervals	72
(55)	Bar chart showing average gingival index in different group	74
(56)	Line chart showing average gingival index in different interval	74
(57&58)	Bar charts showing answers to patient satisfaction questionnaire	78
(59)	Bar chart showing average wong baker scale for different groups	79
(60)	Bar chart showing average fracture resistance (N) for different groups	80
(61)	Bar chart showing average bond strength (MPa) for different groups	81

List of Tables

Table No.	<u>Title</u>	Page No.
(1)	Distribution of 3D printed SM and conventional Band and Loop SMs in the study sample	33
(2)	Materials used in this study	33-34
(3)	Evaluation of the plaque deposits according to the (PI) described by Silness and Loe	52
(4)	Evaluation of the gingival health according to the (GI) described by Loe and Silness	53
(5)	Summary statistics for demographic data	67
(6)	Frequency and percentage values for clinical outcome in different groups	69
(7)	Frequency and percentage values for failure types in different groups	70
(8)	Mean and standard deviation values for plaque index in different groups	71
(9)	Mean and standard deviation values for gingival index in different groups	73

(10.A)	Frequency and percentage values for answers to patient satisfaction questionnaire	76
(10.B)	Frequency and percentage values for answers to patient satisfaction questionnaire	77
(11)	Mean and standard deviation values for wong baker scale in different groups	79
(12)	Mean and standard deviation values for fracture resistance (N) in different groups	80
(13)	Mean and standard deviation values for bond strength (MPa) in different groups	81

List of abbreviations

SM	Space maintainer
B & L	Band and Loop
DB	Direct bonded
FRC	Fiber reinforced composite
3D	Three dimensional
FRCR	Fiber reinforced composite resin
STL	Standard tessellation language
SLA	Stereolithography
PI	Plaque index
GI	Gingival index
GIC	Glass ionomer cement
RMGIC	Resin modified glass ionomer cement

Introduction

The primary dentition plays a determining role in the child's growth and development of the occlusal relations and dentofacial structures.¹

The premature loss of primary teeth due to caries, trauma, ectopic eruption and many other causes can lead to undesirable tooth movements of primary and/or permanent teeth including loss of arch length². Arch length deficiency may produce or increase the severity of malocclusions with crowding, rotations, ectopic eruption, crossbite, excessive overjet, excessive overbite, and unfavorable molar relationships.³

The most effective way of preventing future malocclusion from tooth loss is to place an effective, durable, and economical space maintainer(SM).⁴

There are different kinds of appliances that can be used for space maintenance depending on the child's stage of dental development, dental arch, involved missing teeth, occlusion, patient's age, ability to cooperate and to tolerate an appliance.⁵

The conventional stainless steel band and loop (B&L) space maintainer is the most commonly used appliance among fixed space maintainers for single tooth loss. B&L space maintainer adjusts easily to accommodate changing dentition as well as being economical and requiring little chair time. 6

However, the fabrication of metal B&L consumes more time due to the laboratory work. In addition to many disadvantages as being embedded in gingival tissues, cement dissolution, esthetic insufficiency and being unable to prevent rotation and tipping of abutment teeth.^{5,6}

These disadvantages in addition to the rising interest in esthetic dentistry, have led to the development of newer materials & designs in the fabrication of space maintainers such as such as direct bonded (DB) SMs, fiber-reinforced composite (FRC) SMs, and prefabricated SMs.⁷

Nowadays, digital technology has raised the bar for searching for an alternative to overcome the drawbacks of the metal B&L space maintainers. Since the introduction of three dimensional (3D) printing, its area of dental application has increased widely⁸.

3D printing, also known as additive manufacturing, is the process of making a solid object of virtually any shape based on a digital 3D model. There is a wide range of machines and biocompatible materials that can be utilized with this technology. ¹⁰

The advantage of using 3D scanning and printing in manufacturing space maintainers, is its ability to produce accurate custom made appliance without the need of impression making or laboratory work. In addition to, being cost and time efficient, as well as reducing the failure of the appliance as it is printed in one unit minimizing the chances of breakage.¹⁰

The availability of various 3D printing technology systems in several dental facilities and dental laboratories, and the technical advantages regarding its precision, time saving and quality, made it a strongly recommended substitute for regular conventional treatment modalities.

2