

# بسم الله الرهكن الرّحيم

#### $\infty \infty \infty$

تم رفع هذه الرسالة بواسطة /صفاء محمود عبد الشافي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لايوجد





# Isolation and Characterization of Antimicrobial and Antioxidant Compounds from Actinomycetes

#### **Thesis**

# Submitted as a partial fulfilment of the Master degree in science (Microbiology)

By

#### **Omnia Mohamed Abd Allah**

B.Sc., in Microbiology and Chemistry (2012) Faculty of Science, Ain Shams University

### **Supervisors**

#### Prof. Sahar Tolba Mohamed

Professor of Bacteriology Department of Microbiology Faculty of Science Ain Shams University

#### Prof. Mohamed Ragaa Mohamed

Professor of Biochemistry and Molecular Biology Department of Biochemistry Dean of Faculty of Science, Ain Shams University

Department of Microbiology Faculty of Science Ain Shams University (2022)

# "قَالُواْ سُبْحَانَكَ لاَ عِلْمَ لَنَا إِلاَّ مَا عَلْمَ لَنَا إِلاَّ مَا عَلَّمْتَنَا إِنَّكَ أَنتَ الْعَلِيمُ الْحَكِيمُ".

سورة البقرة (٣٢)

This thesis has not been previously submitted for any degree at this or any other University

Signed

**Omnia Mohamed Abd Allah** 

#### Acknowledgement

First and foremost, my great gratitude and uncountable sincere thanks should be submitted to Allah, the most gracious and the most merciful, and sincere thanks to all of his wisdom plans, inspiration and signs that accompanied me, by the grace of ALLAH, this research work was accomplished.

I would like to express my deepest appreciations to Professor Dr. Sahar Tolba Mohamed professor of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University, for her patience, support and her persistent help to get out this work in elegant form.

I would like to thank, to Professor Dr. Mohamed Ragaa Mohamed professor of Biochemistry and Molecular Biology and Dean, Faculty of Science, Ain Shams University for his valuable instructions. He offers precious suggestion to finish this study.

Thanks to all members of Microbiology Department, Faculty of Science, Ain Shams University for kind support and guidance.

I have no words can express my love, appreciation to my Dad for his support and endless efforts throughout my life, my lovely sister Aya, many thanks for her kindness, care and support especially thought hard times, my mum thanks for her effort in saving appropriate mood and her support. Thanks and much love to Dr Dina, Sherihan, Gehad, Doaa and Dr Nadia for their love, being here and their support.

#### **Omnia Mohamed abd Allah**

# **List of Contents**

| Subject                                                         |    |
|-----------------------------------------------------------------|----|
| Abstract                                                        |    |
| 1. Introduction                                                 |    |
| Aim of work                                                     | 5  |
| 2. Review of literature                                         | 6  |
| 2.1. Actinobacteria                                             | 6  |
| 2.2. Mangrove                                                   | 6  |
| 2.2.1. Egyptian mangrove regions                                | 7  |
| 2.2.2 Avicennia marina                                          | 8  |
| 2.3. Role of rhizospheric <i>Streptomyces</i> in plant growth   | 9  |
| 2.4. Identification and characterization of <i>Streptomyces</i> | 10 |
| sp                                                              |    |
| 2.5. Importance of actinobacterial secondary                    | 11 |
| metabolites                                                     |    |
| 2.6. The antibiotic resistant bacterial infections crises       | 12 |
| 2.7. <i>Streptomycetes</i> as antibiotic producers              | 13 |
| 2.8. <i>Streptomycetes</i> as antioxidant producers             | 14 |
| 2.9. Reactive oxygen species                                    | 15 |
| 2.9.1. Antioxidants                                             | 16 |
| 2.10. Detection of the free radical scavenging using            | 18 |
| DPPH assay                                                      |    |

| 2.11. Current cancer therapies                          | 20 |  |  |
|---------------------------------------------------------|----|--|--|
| 2.12. Role of some natural compounds in cancer          |    |  |  |
| inhibition                                              |    |  |  |
| 2.12.1 Phenolics                                        | 21 |  |  |
| 2.12.2 Flavonoids                                       | 21 |  |  |
| 2.12.3 Alkaloids                                        | 22 |  |  |
| 2.13 Some antitumor agents are produced by              | 23 |  |  |
| Streptomyces                                            |    |  |  |
| 3. Materials and Methods                                |    |  |  |
| 3.1. Materials                                          | 28 |  |  |
| 3.1.1. Chemicals                                        | 28 |  |  |
| 3.1.2. Cell lines                                       | 28 |  |  |
| 3.1.3. List of buffers                                  |    |  |  |
| 3.1.4. List of media                                    | 29 |  |  |
| 3.2. Methods                                            | 33 |  |  |
| 3.2.1. Sample collection                                | 33 |  |  |
| 3.2.2. Isolation of actinobacterial species             | 33 |  |  |
| 3.2.3. Assay for antimicrobial activity of the isolates |    |  |  |
| 3.2.4. Identification of actinobacterial isolates       | 33 |  |  |
| 3.2.4.1. Morphological characterization                 | 34 |  |  |

| 3.2.4.2. Microscopic characterization                 | 35 |
|-------------------------------------------------------|----|
| 3.2.4.2.1. Light microscopy                           | 35 |
| 3.2.4.2.2. Electron microscopy                        | 35 |
| 3.2.4.3. Biochemical characterization                 | 36 |
| 3.2.4.3.1. Starch hydrolysis                          | 36 |
| 3.2.4.3.2. Proteolytic activity                       | 36 |
| 3.2.4.3.3. Catalase activity                          | 37 |
| 3.2.4.3.4. Melanoid pigment production                | 37 |
| 3.2.4.3.5. H <sub>2</sub> S production                | 38 |
| 3.2.4.3.6. NaCl tolerance                             | 38 |
| 3.2.4.3.7. Growth at different temperatures degrees   | 38 |
| 3.2.4.3.8. pH tolerance                               | 38 |
| 3.2.4.3.9. Utilization of different carbon sources    | 38 |
| 3.2.4.3.10. Utilization of different nitrogen sources | 39 |
| 3.2.4.4. Molecular characterization                   | 39 |
| 3.2.4.4.1. PCR amplification of 16S-rRNA gene         | 39 |
| 3.2.4.4.2. Colony PCR                                 | 39 |
| 3.2.4.4.3. Primers                                    | 39 |
| 3.2.4.4.4. Reaction mixture                           | 40 |
| 3.2.4.4.5. PCR                                        | 40 |

| 3.2.4.4.6. Gel electrophoresis                                  |    |  |
|-----------------------------------------------------------------|----|--|
| 3.2.4.4.7. Sequencing 16S-rRNA genes                            |    |  |
| 3.2.4.4.8. Sequence analysis and phylogenetic tree              |    |  |
| construction                                                    |    |  |
| 3.2.5. Extraction of bioactive compounds from culture           | 42 |  |
| broth                                                           |    |  |
| 3.2.6. Secondary screening for antimicrobial activities of      | 43 |  |
| ethyl acetate extracts of strains using agar well diffusion     |    |  |
| method                                                          |    |  |
| 3.2.7. Free radical scavenging activity                         | 43 |  |
| 3.2.8. Cell viability assay                                     |    |  |
| 3.2.8.1. Cell line Propagation                                  | 44 |  |
| 3.2.8.2. Cytotoxicity evaluation using viability assay          | 45 |  |
| <b>3.2.9.</b> LiquidChromatography-Mass Spectrometry (LC-       |    |  |
| MS/MS) Analysis                                                 |    |  |
| 3.2.10. Statistical analysis                                    |    |  |
| 4. Results                                                      |    |  |
| 4.1. Isolation of actinobacterial species                       | 48 |  |
| <b>4.2.</b> Morphological characteristics of the isolates       | 50 |  |
| <b>4.3.</b> Primary screening of antimicrobial activity by disc | 54 |  |
| diffusion method                                                |    |  |
| <b>4.4.</b> Identification of actinobacterial isolates          |    |  |
| 4.4.1. Morphological characterization                           | 58 |  |
| 4.4.2. Biochemical and physiological characterization           | 62 |  |

| 4.4.3. Molecular characteristics of the selected                 |    |
|------------------------------------------------------------------|----|
| Isolates                                                         |    |
| 4.5. Detection of antimicrobial activity of ethyl acetate        | 66 |
| extract of the selected isolates using agar well                 |    |
| diffusion method                                                 |    |
| 4.6. The radical scavenging activity using DPPH assay            | 69 |
| 4.7. Cytotoxicity screening                                      | 72 |
| 4.8. Liquid Chromatography-Mass Spectrometry (LC-MS/MS) Analysis | 86 |
| Discussion                                                       |    |
| Summary                                                          |    |
| Conclusion                                                       |    |
| Appendix                                                         |    |
| References                                                       |    |

# **List of Tables**

| Table                                                       | Page |
|-------------------------------------------------------------|------|
| Table (1): Morphological and cultural characteristics of    | 50   |
| the isolates grown on 4 different agar media                |      |
| Table (2): Antimicrobial activity of the actinobacterial    | 55   |
| isolates grown on three different media against five tested |      |
| microorganisms using Kirby-Bauer method: diameter of        |      |
| inhibition inhibition zone in (mm).                         |      |
| Table (3): Biochemical and physiological characterization   | 63   |
| of the potent isolates.                                     |      |
| Table (4): Results of the MIC and inhibition zone           | 67   |
| diameters are recorded by the selected strains EA extracts. |      |
| Table (5): Scanning of cytotoxicity of EA extract of        | 76   |
| Streptomyces atrovirens (MS5) strain against four cancer    |      |
| cell lines (HepG-2, HCT116 and MCF-7) in comparison         |      |
| to control cells (MRC 5)                                    |      |
| Table (6): Evaluation of cytotoxicity of EA extract of      | 78   |
| Streptomyces labedae (MR15) strain against four cancer      |      |
| cell lines (HepG-2, HCT116 and MCF-7) in comparison         |      |
| to control cells (MRC 5)                                    |      |
| Table (7): Evaluation of cytotoxicity of EA extract of      | 80   |
| Streptomyces rochei (MM23) strain against four cancer       |      |
| cell lines (HepG-2, HCT116 and MCF-7) in comparison         |      |
| to control cells (MRC 5)                                    |      |
| Table (8): Evaluation of cytotoxicity of EA extract of      | 82   |
| Streptomyces sampsonii (RR12) strain against four cancer    |      |
| cell lines (HepG-2, HCT116 and MCF-7) in comparison         |      |
| to control cells (MRC 5).                                   |      |
| Table (9): Identified compounds are recovered from LC       | 87   |
| MS/MS peaks of the two potent ethyl acetate crude           |      |
| extracts MS5 and MR15                                       |      |

# **List of Figures**

| Figure                                                                                                                                                                                                                                                              | page |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Figure 1: Antimicrobial activity of selected microorganisms using disc agar diffusion method.                                                                                                                                                                       | 57   |
| Figure 2: cultural characteristics of MS5 isolate showing: (1): growth of aerial mycelium, (2): growth of substrate mycelium were sub-cultured on: (A) starch nitrate agar, (B) on glycerol-asparagine agar, (C) on starch casein agar and (D) on oatmeal agar      | 59   |
| Figure 3: Cultural characteristics of MR15 isolate showing: (1): growth of aerial mycelium, (2): growth of substrate mycelium is sub-cultured on: (A) starch nitrate agar, (B) on glycerol-asparagine agar, (C) on starch casein agar and (D) on oatmeal agar.      | 59   |
| Figure 4: Cultural characteristics of MM23 isolate showing: (1): growth of aerial mycelium, (2): growth of substrate mycelium were sub-cultured on: (A) starch nitrate agar, (B) on glycerol-asparagine agar, (C) on starch casein agar and (D) on oatmeal agar     | 60   |
| Figure 5: Cultural characteristics of RR12 isolate showing: (1): growth of aerial mycelium, (2): growth of substrate mycelium they were sub-cultured on: (A) starch nitrate agar, (B) on glycerolasparagine agar, (C) on starch casein agar and (D) on oatmeal agar | 60   |
| Figure 6: Scanning electron microscope micrograph of (A): MS5 by (X 3.500), (B): RR12 (X8500), (C) MR15 (X 5000), (D): MM23 (X4000).                                                                                                                                | 61   |
| Figure (7): Neighbor-joining Phylogenetic tree based on partial rRNA gene sequences from the four strains and other <i>Streptomyces</i> species using phylip V5. Numbers on the nodes indicate to percentage of bootstrap values Calculated from 100 trees.         | 65   |

| Figure (8): Representative plates showing antimicrobial activity of                                        | 68  |
|------------------------------------------------------------------------------------------------------------|-----|
| the ethyl acetate extracts using well diffusion method of (A): MR15                                        |     |
| against Staphylococcus aureus, (B): MM23 against Pseudomonas                                               |     |
| aeruginosa.                                                                                                |     |
| Figure (9): DPPH scavenging activity inhibition percentages                                                | 70  |
| exhibited by EA extract of <i>Streptomyces atrovirens</i> (MS5) with                                       | 70  |
| standard ascorbic acid at respective concentrations: linear                                                |     |
| -                                                                                                          |     |
| representation for IC <sub>50</sub> calculation                                                            | 70  |
| Figure (10): DPPH scavenging activity inhibition percentages                                               | 70  |
| exhibited by EA extract of Streptomyces labedae (MR15) with                                                |     |
| standard ascorbic acid at respective concentrations: linear                                                |     |
| representation for IC <sub>50</sub> calculation.                                                           |     |
| Figure (11): DPPH scavenging activity inhibition percentages                                               | 72  |
| exhibited by EA extract of Streptomyces rochei (MM23) with                                                 |     |
| standard ascorbic acid at respective concentrations: linear                                                |     |
| representation for IC <sub>50</sub> calculation                                                            |     |
| Figure (12): DPPH scavenging activity inhibition percentages                                               | 72  |
| exhibited by EA extract of Streptomyces sampsonii (RR12) with                                              |     |
| standard ascorbic acid at respective concentrations: linear                                                |     |
| representation for IC <sub>50</sub> calculation.                                                           |     |
| Figure (13): Inhibition percentages exerted by EA extract of                                               | 78  |
| Streptomyces atrovirens (MS5) strain against four cancer cell lines:                                       |     |
| HepG-2, HCT-116, A-549 and MCF-7 in comparison to the                                                      |     |
| inhibition percentage against control cells (MRC-7).                                                       |     |
| Figure (14): Inhibition percentages exerted by EA extract of                                               | 79  |
| Streptomyces labedae (MR15) strain against four cancer cell lines:                                         |     |
| HepG-2, HCT-116, A-549 and MCF-7 in comparison to the                                                      |     |
| inhibition percentage against control cells (MRC-7).                                                       |     |
| Figure (15): Inhibition percentages exerted by EA extract of                                               | 81  |
| Streptomyces rochei (MM23) strain against four cancer cell lines:                                          | 0.1 |
| HepG-2, HCT-116, A-549 and MCF-7 in comparison to the                                                      |     |
|                                                                                                            |     |
| HepG-2, HCT-116, A-549 and MCF-/ in comparison to the inhibition percentage against control cells (MRC-7). |     |

|                                                                 | 3 |
|-----------------------------------------------------------------|---|
| (C) (DD 10) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (               |   |
| Streptomyces sampsonii (RR12) strain against four cancer cell   |   |
| lines: HepG-2, HCT-116, A-549 and MCF-7 in comparison to        |   |
| the inhibition percentage against control cells(MRC-7).         |   |
| 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                         | 5 |
| inverted microscope using objective lens (40x) at two           |   |
| concentrations. Morphology of MRC-5 cells (control cells) (A)   |   |
| untreated cells (B) treated cells with EA extract of MR 15 at   |   |
| 62.5µg/ml, (c) treated cells with EA extract of MR15 at         |   |
| 500µg/ml. Morphology of HepG-2 cancer cell line (D):            |   |
| untreated cells (B) treated cells with EA extract of            |   |
| Streptomyces labedae MR 15 at 62.5µg/ml, (c) treated cells      |   |
| with EA of MR15 at 500μg/ml.                                    |   |
| Figure (18): Diagram showing the detected compounds in the 8    | 9 |
| EA of Streptomyces atrovirens (MS5): (A): TIC of THE            |   |
| DETECTED COMPOUNDS USING LC MS/MS technique, (B):               |   |
| mass spectrum of the detected compounds using peak view         |   |
| software version 2.2 (1): GABA, (2): DL-Pipecolic acid, (3):    |   |
| proline, (4): Indole-3-carboxyaldehyde, (5): Loliolide, (6): S- |   |
| glutathione, (7):tyramine, (8): Quinolenic acid.                |   |
| Figure (19): Diagram showing the detected compounds in the      | 2 |
| EA of Streptomyces labedae (MR15): (A): TIC of the detected     |   |
| compounds using LC MS/MS technique, (B): mass spectrum of       |   |
| the detected compounds using peak view software version 2.2     |   |
| the mass spectrum of the detected compounds using peak view     |   |
| software version 2.2 (1): 4-hydroxy-3-(3-methyl-2-butenyl)      |   |
| acetophenone,(2): 5-[4, 5-dihydroxy-6-(hydroxymethyl)-3-        |   |
| (3,4,5-trihydroxyoxan-2-yl) oxyoxan-2-yl]oxy-7,8-dimethoxy-     |   |
| 3-(4-methoxyphenyl)chromen-4-one, (3): linoleic acid, (4):      |   |
| Indole-3-carboxyaldehyde                                        |   |

## **List of Abbreviations**

| μ     | Micron (10 <sup>-6</sup> )          |
|-------|-------------------------------------|
| BLAST | Basic local alignment search tool   |
| bp    | Base pair                           |
| cm    | Centimeter                          |
| DNA   | Deoxyribose nucleic acid            |
| dNTP  | Deoxyribose nucleotide triphosphate |
| EDTA  | Ethylene diamine tetra acetic acid  |
| g     | Gram                                |
| h     | hour(s)                             |
| Kb    | Kilo base                           |
| 1/L   | Liter                               |
| οС    | Degree Celsius                      |
| mg    | Milligram                           |
| μΙ    | Microliter                          |
| mm    | Milliliter                          |
| mg/ml | Milligram/milliliter                |
| μg/ml | Microgram/milliliter                |
| min   | Minute                              |
| NCBI  | National Centre for Biotechnology   |
|       | information                         |
| PCR   | Polymerase chain reaction           |
| rDNA  | Ribosomal deoxynucleic acid         |
| rRNA  | Ribosomal ribonucleic acid          |
| SDS   | Sodium dodecyl sulphate             |
| Sec.  | Seconds                             |
| Sp.   | Species                             |
| TAE   | Tris-acetic acid-EDTA               |
| TE    | Tris-HCL EDTA                       |
| V     | Volts                               |
| %     | Percent                             |
| w/v   | Weight/ Volume                      |