

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

INVESTIGATING THE SURFACE CHANGES UNDER DIFFERENT GRINDING CONDITIONS AND THEIR IMPACT ON OIL SHALE FLOTATION

By

Nesren Mohamed KhairyAbd El-Aziz Khalf

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
MINING ENGINEERING

INVESTIGATING THE SURFACE CHANGES UNDER DIFFERENT GRINDING CONDITIONS AND THEIR IMPACT ON OIL SHALE FLOTATION

By Nesren Mohamed KhairyAbd El-Aziz Khalf

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
MINING ENGINEERING

Under the Supervision of

Prof. Dr. Ayman A. El-Midany

Professor of Mining Engineering Mining, Petroleum and Metallurgy Dept. Faculty of Engineering, Cairo University

Prof. Dr. Salah El-Din M.El-Mofty

Professor of Mining Engineering Mining, Petroleum and Metallurgy Dept.Faculty of Engineering, Cairo University

Prof. Dr. Islam Hamza Abou El-Magd

Professor of Remote Sensing Environmental Studies Dept. National Authority for Remote Sensing and Space sciences

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021

INVESTIGATING THE SURFACE CHANGES UNDER DIFFERENT GRINDING CONDITIONS AND THEIR IMPACT ON OIL SHALE FLOTATION

By Nesren Mohamed KhairyAbd El-Aziz Khalf

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
MINING ENGINEERING

Approved by the Examining Committee

Prof. Dr. Ayman A. El-Midany Thesis Main Advisor

Prof. Dr. Salah El-Din M. El-Mofty Advisor

Prof. Dr. Islam Hamza Abou El-Magd Advisor

Professor of Remote Sensing, NARSS.

Prof. Dr. Ahmad M. El-MahdyAssociate Professor, Central Metallurgical R&D Institute

Prof. Dr. Wael M.FathyAssociate Professor, Faculty of Engineering, Azhar University.

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021 **Engineer's Name:** Nesren M. Khairy A. El-Aziz khalf

Date of Birth: 16/9/1984 **Nationality:** Egyptian

E-mail: Nesrenkhairy@yahoo.com

Phone: 01222916031

Address: 5 Sanan St. Hadayek El-Zayton

Registration Date: 1/10/2013 **Awarding Date:**/2021

Degree: Doctor of Philosophy

Department: Mining, Petroleum and Metallurgy Engineering

Supervisors:

Prof. Ayman A. El-Midany Prof. Salah El-Din M. El-Mofty. Prof. Islam Hamza Abou El-Magd **Professor of Remote Sensing, NARSS**

Examiners:

Prof. Ayman A. El-Midany (Thesis main advisor)

Prof. Salah El-Din M. El-Mofty (Advisor)
Prof. Islam Hamza Abou El-Magd (advisor)
Professor of Remote Sensing, NARSS

Prof. Ahmad M. El-Mahdy (External examiner)

Associate Professor, CMRDI

Prof. Wael M. Fathy (External examiner)
Associate Professor, Faculty of Engineering,

Al-Azhar University

Title of Thesis:

INVESTIGATING THE SURFACE CHANGES UNDER DIFFERENT GRINDING CONDITIONS AND THEIR IMPACT ON OIL SHALE FLOTATION

Key Words:

Oil shale; Surface change; Grinding; Flotation; Heating.

Summary:

Oil shale surface sensitivity is one of the challenging problems. Therefore, the oil shale breakage, as well as its surface characteristics, was studied under different applied grinding loads in terms of the number of balls, ball diameter, grinding time, and density of balls (steel and ceramic) and fitted to first and second grinding kinetic laws. Although the d50 size decreases with increasing the applied load and time, the higher the load is the less the flotation performance. In addition, matching the FTIR spectra for heated oil shale samples surface with those for the ground product at different conditions indicated that the grinding zone temperature does not exceed 150 °C with high oil shale oxidation with finer grinding. Furthermore, FTIR and Zeta potential indicated that although there is no organics release, the fine particles coating leads to bad flotation results. Finally, grinding and flotation mechanisms were suggested.

Disclaimer

I hereby declare this thesis is my original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and

have cited them in the references section.

Name: Nesren Mohamed Khairy Abd El-Aziz Khalf	Date://2021
Signature:	

Dedication

This thesis is dedicated to my beloved family who has meant and continues to mean so much for me. First to my mother, whose love, support, and encouragement have meant to me so much. She is my source of inspiration and always gives me strength when I am almost giving up. To my father who is no longer of this world, his memories continue to regulate my life. whose love for me knew no bounds and, who taught me the value of hard work. To my brother and sister, who shared their words of advice and encouragement during the challenges of study and life. I am truly thankful for having you in my life. my wonderful sister's kids as they are the joy to me.

I dedicate this work and give special thanks to my best friend Ghada for being there for me. I also dedicate this dissertation to my friends at the mining department, Ola, Tahany, Reham, Amr, and Raweya, whom have supported me throughout the study, especially Ola for her overall help and support. Also, I would like to thank my friends at NARSS Esraa, Mona, Rasha, Naglaa, Shaima, Hossam, and Khaled for all they have done to me.

Acknowledgments

First, I thank Almighty GOD for helping me finish my thesis. I would like to sincerely thank my supervisors, Prof. Ayman El-Midany, Head of Mining Division, Mining, Petroleum, and Metallurgy department, Prof. Salah El-Dien El-Mofty, Professor of Mineral processing, Faculty of Engineering, Cairo University and Prof. Islam Abou Elmagd Professor of remote sensing and environment, National Authority for Remote Sensing and Space Sciences, for supporting me throughout my thesis by providing me with knowledge, sharing ideas and encouraging me. Also, their guidance helped me in all time of research and writing of this thesis.

I offer my sincerest thanks to Prof. Enas El-Sheikh at Nuclear Materials Authority for her help and support. Also, I would like to thank the staff of mineral processing laboratories particular Mr. Abd El Aty, and friends and members of the mining department, Faculty of Engineering, Cairo University for all the help.

Last but not least, I want to thank my family for their unconditional support, both financially and emotionally throughout my degree, in particular, the patience and understanding shown by my mom.

Table of contents

LIST OF TABLES	V
LIST OF FIGURES	VI
ABSTRACT	X
CHAPTER 1: INTRODUCTION	1
1.1. OVERVIEW	1
1.2. OIL SHALE	2
1.2.1. Composition	2
1.2.2. Classification	
1.2.3. Quality of Kerogen	3
1.2.4. Oil shale uses	4
1.2.5. Oil shale in world	4
1.3. OIL SHALE IN EGYPT	5
1.4. BENEFICIATION ROLE IN OIL SHALE DEVELOPMENT	7
CHAPTER 2: LITERATURE REVIEW	8
2.1. GRINDING	8
2.2. FLOTATION TECHNIQUES	9
2.2.1. Froth flotation	9
2.2.2. Column flotation	10
2.3. MAIN FACTORS AFFECTING OIL SHALE FLOTATION	11
2.3.1. Mineralogy	11
2.3.2. Grinding as flotation feed preparation step	
2.3.3. Surface characteristics	13
CHAPTER 3: EXPERIMENTAL	14
3.1. OIL SHALE SAMPLES	14
3.2. PREPARATION	
3.2.1. Crushing	15
3.2.2. Grinding	15
3.2.2.1. Grinding procedure	
3.2.2.2. Intermittent and Elongated grinding	
3.2.2.3. Grinding Kinetics	
3.3. SAMPLE CHARACTERIZATION	
3.3.1. Microscopic Analysis	
3.3.2. Scanning Electron Microscope	
3.3.3. Energy Dispersive X-Ray Analysis	
3.3.4. Chemical analysis	
3.3.5. Ore characteristics analysis	
3.3.6. Screening analysis	
3.3.7. Thermal analysis	

3.3.8. Fourir Transform Infrared	20
3.3.8.1. Prediction of generated heat in grinding	20
3.3.9. Electro-Kinetic measurements	20
3.4. FLOTATION	21
CHAPTER 4: RESULTS AND DISCUSSION	23
4.1. CHARACTERIZATION OF OIL SHALE SAMPLES	23
4.1.1. Chemical analysis	23
4.1.2. Ore characteristics	23
4.1.3. Screening analysis	24
4.1.4. Energy Dispersive X-Ray Analysis	
4.1.5. Microscopic analysis results	
4.1.6. Scanning Electronic Microscope	
4.1.7. Thermal analysis	
4.1.8. Fourier Transform Infrared	
4.2. OIL SHALE GRINDING	
4.2.1. Effect of different parameters on oil shale grinding	
4.2.1.1 Effect of oil shale composition	
4.2.1.2. Effect of grinding media	
4.2.1.3. Effect of ball size	
4.2.1.4. Effect of balls filling	41
4.2.1.5. Effect of grinding time	
4.2.2. Optimization of oil shale grinding process	
4.2.2.1. El-Nakheil	
4.2.2.2. El-Beda	
4.2.3. Grinding kinetics 4.2.3.1. First-order law determination.	
4.2.3.1. First-order law determination	
4.2.3.3. Breakage rate determination	
4.2.4. Prediction if there is any generated heat in grinding	74
4.2.4.1. Effect of different heating temperatures and time	
4.2.4.2. Correlation of the heating results to grinding by different grinding media and time	
4.2.4.3. Intermittent and Continuous grinding	
4.2.5. Effect of grinding conditions on oil shale surface	
4.2.5.1. Grinding time	
4.3. OIL SHALE FLOTATION	
4.3.1. Effect of grinding parameters on flotation	
4.3.1.2. Effect of balls filling	
4.3.1.3. Effect of grinding time	
4.3.1.4. FTIR of ground Vs floated product.	
4.3.2. Optimization of oil shale flotation process	103
4.3.2.1. El-Nakheil	
4.3.2.2. El-Beda	
4.3.3. Zeta Potential	
4.3.4. Illustration of grinding and flotation processes	
4.4. FUTURE RECOMMENDATIONS	
4.4.1. Technical recommendation.	119
4.4.1 Economic recommendation	119

CONCLUSION	121
REFERENCES	123

List of Tables

Table 1.1:	Basic Kerogen types in sedimentary rocks	4
Table 3.1:	Steel and Ceramic balls diameters and weight	16
Table 4.1:	Chemical analysis of oil shale samples	23
Table 4.2:	Ore characteristics of oil shale samples	23
Table 4.3:	Loss-on-ignition (LOI) for different particles sizes	24
Table 4.4:	FTIR peaks identification	32
Table 4.5:	Oil shale characteristics effect on oversize wt. %	34
Table 4.6:	Effect of grinding media on oversize wt. %	37
	Effect of ball size on oversize wt. %	
Table 4.8:	Effect of balls filling number on oversize wt. %	44
Table 4.9:	Effect of grinding time on oversize wt. %	48
Table 4.10:	Statistical design results of El-Nakheil in terms of d ₅₀	49
Table 4.11:	ANOVA for d ₅₀ steel balls response of El-Nakheil	50
	ANOVA for d ₅₀ ceramic balls response of El-Nakheil	
Table 4.13:	El-Nakheil Statistical data for d ₅₀ - steel and ceramic balls	51
Table 4.14:	Statistical design results of El-Beda in terms of d50	56
Table 4.15:	ANOVA for d ₅₀ of El-Beda grinding by steel balls	57
Table 4.16:	ANOVA for d ₅₀ of El-Beda grinding by ceramic balls	57
Table 4.17:	El-Beda Statistical data for d ₅₀ - steel and ceramic balls	57
Table 4.18:	El-Nakheil, Coefficient of determination R^2	70
Table 4.19:	El-Beda, Coefficient of determination R^2	72
Table 4.20:	El-Nakheil Specific breakage rate, S_i	73
	El-Beda Specific breakage rate, <i>S_i</i>	
Table 4.22:	Effect of grinding type on the passed % -0.3mm	82
Table 4.23	Statistical design results of El-Nakheil in terms of LOI%	103
Table 4.24:	ANOVA for LOI % of El-Nakheil using steel balls	104
Table 4.25:	ANOVA for LOI % of El-Nakheil using ceramic balls	104
Table 4.26:	El-Nakheil Statistical data for LOI%- steel and ceramic balls	105
Table 4.27:	Statistical design results of El-Beda in terms of LOI%	110
	ANOVA for LOI% steel balls response of El-Beda	
Table 4.29:	ANOVA for LOI% ceramic balls response of El-Beda	111
Table 4.30:	Statistical data from LOI% - steel model	111

List of Figures

Figure 1.1:	Total world primary energy demand	1
Figure 1.2:	Van Krevelen diagram	
Figure 1.3:	Top ten countries with recoverable oil shale deposit	5
Figure 1.4:	Oil shale in Egypt	
Figure 3.1:	Experimental work flow sheet	.14
Figure 3.2:	Gyratory crusher	
Figure 3.3:	Mechanism of grinding in ball mill	.16
Figure 3.4:	Different grinding media	16
Figure 3.5:	Zeta meter	.21
Figure 3.6:	Hallimond tube	.22
Figure 4.1:	EDX spectrum of El-Nakheil oil shale	.25
Figure 4.2:	EDX spectrum of El-Beda oil shale	.25
Figure 4.3:	Thin section of El-Nakheil oil shale (a, b, c)	.26
Figure 4.4:	Polished section of El-Nakheil oil shale	
Figure 4.5:	Thin section of El-Beda oil shale (a, b, c)	.28
Figure 4.6:	SEM of El-Nakheil Raw Sample	
Figure 4.7:	SEM of El-Beda Raw Sample	
Figure 4.8:	TGA of El-Nakheil oil shale	
Figure 4.9:	DTA and of El-Nakheil oil shale	
•	TGA of El-Beda oil shale	31
	DTA and of El-Beda oil shale	
	The FTIR spectra of El-Nakheil oil shale	
_	The FTIR spectra of El-Beda oil shale	
	Effect of oil shale composition on grinding results for 20 minutes	
	using 10 balls of 3 cm diameter	34
Figure 4.15:	Effect of grinding media on oil shale grinding for 20 minutes	
	using 10 balls of 4 cm diameter, a) El-Nakheil, and b) El-Beda	36
Figure 4.16:	Effect of grinding media on d ₅₀ particle size for 20 minutes	
	using 10 balls of 4 cm diameter	37
Figure 4.17:	Effect of ball size on El-Nakheil grinding for 20 minutes using 10 balls	5
	a) Steel balls, and b) Ceramic balls	.38
Figure 4.18:	Effect of ball size on El-Beda grinding for 20 minutes using 10 balls	
	a) Steel balls, and b) Ceramic balls	.39
Figure 4.19:	Effect of ball size on d ₅₀ particle size for 20 minutes using 10 balls	
	a) El-Nakheil, and b) El-Beda	.40
Figure 4.20:	Effect of ball filling El-Nakheil grinding for 30 minutes using	
	4 cm. diameter balls a) Steel balls, and b) Ceramic balls	.42
_	Effect of ball filling on El-Beda grinding for 30 minutes using	
	4 cm. diameter balls a) Steel balls, and b) Ceramic balls	.43
_	Ball filling effect on d ₅₀ particle size for 30 minutes using	
	4 cm. diameter balls a) El-Nakheil, and b) El-Beda	.44
Figure 4.23:	Effect of grinding time on El-Nakheil grinding using 17 balls	
	of 4 cm. diameter balls a) Steel balls, and b) Ceramic balls	.46

Figure 4.24: Effect of grinding time El-Beda grinding using 17 balls	
of 4 cm. diameter balls a) Steel balls, and b) Ceramic balls	47
Figure 4.25: Effect of grinding time d ₅₀ particle size using 17 balls of	
4 cm. diameter balls a) El-Nakheil, and b) El-Beda	48
Figure 4.26: d ₅₀ response of El-Nakheil using steel balls	
a)10 min., (b) 20 min., and (c) 30 min	52
Figure 4.27: Cube graph for El-Nakheil grinding using steel balls	
Figure 4.28: d ₅₀ response of El-Nakheil using ceramic balls	
a)10 min., (b) 20 min., and (c) 30 min	53
Figure 4.29: Cube graph for El-Nakheil grinding using ceramic balls	
Figure 4.30: Interaction graphs of El-Nakheil using steel balls	
a)10 min., (b) 20 min., and (c) 30 min	54
Figure 4.31: Interaction graphs of El-Nakheil using ceramic balls	
a)10 min., (b) 20 min., and (c) 30 min	55
Figure 4.32: d ₅₀ response of El-Beda using steel balls	
a)10 min., (b) 20 min., and (c) 30 min	59
Figure 4.33:Cube graph for El-Nakheil grinding using steel balls	
Figure 4.34: d ₅₀ response of El-Beda using ceramic balls	
a)10 min., (b) 20 min., and (c) 30 min	60
Figure 4.35: Cube graph for El-Beda grinding using ceramic balls	
Figure 4.36: Interaction graphs of El-Beda using steel balls	
a)10 min., (b) 20 min., and (c) 30 min	61
Figure 4.37: Interaction graphs of El-Beda using ceramic balls	
a)10 min., (b) 20 min., and (c) 30 min	62
Figure 4.38: Effect of balls size on first-order plots using 5 balls filling	
(a)steel balls, and (b) ceramic balls	64
Figure 4.39: Effect of balls size on first-order plots using 17 balls filling	
(a)steel balls, and (b) ceramic balls	65
Figure 4.40: Effect of balls size on first-order plots using 5 balls filling	
(a)steel balls, and (b) ceramic balls	67
Figure 4.41: Effect of balls size on first-order plots using 17 balls filling	
(a)steel balls, and (b) ceramic balls	68
Figure 4.42: Effect of balls size on second-order plots using 5 balls filling	
(a)steel balls, and (b) ceramic balls	69
Figure 4.43: Effect of balls size on second-order plots using 17 balls filling	
(a)steel balls, and (b) ceramic balls	70
Figure 4.44: Effect of balls size on second-order plots using 5 balls filling	
(a)steel balls, and (b) ceramic balls	71
Figure 4.45: Effect of balls size on second-order plots using 17 balls filling	
(a)steel balls, and (b) ceramic balls	72
Figure 4.46: El-Nakheil heating at 150°C at different times	
Figure 4.47: El-Nakheil heating at 300°C at different times	
Figure 4.48: El-Nakheil heating at 500°C at different times	
(a)FTIR spectrum, and b) Impact of heating time on oil shale	76
Figure 4.49: FTIR correlation of heating at 150°C at 20 min and ground products	
using different ceramic balls' numbers of 4 cm. diameter at 20 min	78
Figure 4.50: FTIR correlation of heating at 150°C at 20 min and ground products	
using different steel balls' numbers of 4 cm. diameter at 20 min	78

Figure 4.51: FTIR correlation of heating at 150°C for 40 min and ground products	
using different ceramic balls' numbers of 4 cm. diameter at 30 min	79
Figure 4.52: FTIR correlation of heating at 150°C for 40 min. and ground products	
using different steel balls' numbers of 4 cm. diameter at 30 min	
Figure 4.53: FTIR correlation of different heating temperatures at 80 minutes	
and different impact loads using 17 balls of 4 cm. diameter at 30 min	80
Figure 4.54: FTIR correlation of heating at 200°C for 80 min. and ground products	
using 17 steel balls of 4 cm. diameter at different grinding times	
Figure 4.55: FTIR correlation of heating at 200°C for 80 min and different grinding	
types using 17 steel balls of 4 cm. diameter at 2 hr. grinding time	-
Figure 4.56: Effect of grinding type a) cumulative passed wt.%,	
and b) d_{50} particle size	82
Figure 4.57: Effect of grinding type on oil shale surface	
Figure 4.58: FTIR spectra of the El-Nakheil products at different grinding times	
	84
Figure 4.59: FTIR spectra of El-Nakheil products at different grinding times	
using 5 ceramic balls of 4 cm diameter	84
Figure 4.60: FTIR spectra of El-Beda products at different grinding times	07
using 5 steel balls of 4 cm diameter	85
Figure 4.61: FTIR spectra of El-Beda products at different grinding times	65
using 5 ceramic balls of 4 cm diameter	.85
Figure 4.62: FTIR spectra of El-Nakheil products at a different grinding time	.05
	86
Figure 4.63: FTIR spectra of El-Nakheil products at a different grinding time	60
using 17 ceramic balls of 4 cm diameter	97
Figure 4.64: FTIR spectra El-Beda products at a different grinding time	0/
using 17 steel balls of 4 cm diameter	88
Figure 4.65: FTIR spectra of El-Beda products at a different grinding time	66
using 17 ceramic balls of 4 cm diameter	88
Figure 4.66: Effect of ball size on (a) LOI %, and (b) Recovery%	00
in the float fraction	90
Figure 4.67: Effect of ball size on a) LOI %, and b) Recovery%	90
in the float fraction	0.1
Figure 4.68: Effect of balls filling number on a) LOI %, and b) Recovery%	91
in the float fraction	02
	92
Figure 4.69: Effect of balls filling number on a) LOI %, and b) Recovery% in the float fraction	0.4
in the float fraction	94
	0.5
(a) LOI %, and (b) Recovery% in the float fraction	93
Figure 4.71: Effect of grinding time using 10-balls filling number on	0.0
(a)LOI %, and (b) Recovery% in the float fraction	90
Figure 4.72: Effect of grinding time using 17-balls filling number on	07
(a)LOI %, and (b) Recovery% in the float fraction	9/
Figure 4.73: Effect of grinding time using the 5-balls filling number on	00
(a)LOI %, and (b) Recovery% in the float fraction	98
Figure 4.74: Effect of grinding time using 10-balls filling number on	00
(a)LOI %, and b) Recovery% in the float fraction	.99