

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

Study of Toxicity and Endocrine Disruptions in Two Classes of Pesticides in Male Albino Rats

Thesis

Submitted for Fulfillment of Ph.D Degree in Biochemistry

Submitted By

Wissam Abd El-hamid Mohamed Elsagher

M.Sc. in Biochemistry 2013

Under Supervision of

Prof. Dr. Magdy Mahmoud Mohamed

Professor of Biochemistry
Faculty of Science - Ain Shams University

Dr. Eman Mohamed Saleh

Assistant Professor of Biochemistry Faculty of Science- Ain Shams University

Dr. Rasha El-Sherif Hassan

Assistant Professor of Biochemistry Faculty of Science- Ain Shams University

Dr. Mahmoud Badr Abd El Wahab

Assistant Counsultant of Biochemistry Poison Control Center Ain Shams University Hospitals

Biochemistry Department Faculty of Science - Ain Shams University 2022

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Magdy Mahmoud**, Professor of Biochemistry, Faculty of Science, Ain Shams University, for his meticulous supervision, kind guidance, valuable instructions and generous help.

I am deeply thankful to Dr. Eman Mohamed Saleh, Assistant Professor of Biochemistry, Faculty of science, Ain Shams University, for her sincere efforts, active cooperation, and encouragement.

Special thanks are due to **Dr.Rasha El-sherif Hassan**, Assistant Professor of Biochemistry, Faculty of
Science, Ain Shams University for her great help,
outstanding support, active participation and guidance.

Really I can hardly find the words to express my gratitude to **Dr. Mahmoud Badr Abd & Wahab**, Assistant Consultant, Poison Control Center, Ain Shams University Hospitals, for his supervision, continuous help and encouragement throughout this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Wissam Abd El-hamid Mohamed Elsagher

ABSTRACT

Background: Endocrine disrupting chemicals (EDCs) are chemicals released into the environment and affect an organism's endocrine system. Endocrine disrupting pesticides (EDPs) are the largest group of EDCs in numbers. Pesticides have been associated with endocrine disrupting activity and their potential to modify the hormonal profile was noticed. Organophosphorus (OP) and Carbamate are the most commonly used pesticides in agriculture field Aim: This study aimed to determine the toxicity and endocrine disrupting effect of Chlorpyrifos (CPF) as organophosphate pesticide and Carbaryl as carbamte and their mixture in male albino rats. Material and methods: Fourty adult Male Swiss albino rats were divided into four groups (10 rats/group): Group (I): control group, Group (II): rats were treated with CPF 10.6mg/kg bw, Group (III) rats were treated with Carbaryl 30mg/kg bw and Group (IV) rats were treated with mixture of CPF and Carbaryl for two months. The levels of serum MDA, TAC, PON1 and pseudo cholinesterase) as well as serum lipid profile were determined for the study animals. In addition, the endocrine disruptor effect of the studied pesticides was evaluated through measuring serum levels of Testosterone and Estradiol hormones and their receptors AR and ER. Serum thyroid hormones levels were also determined. Histopathological analysis for liver, testes and thyroid was also performed. **Results:** our finding revealed a decrease in TAC, PON1 and cholinesterase levels with an increase in MDA levels in all groups. Levels of lipid profile showed significant increase except HDL levels which decreased in all groups. We also found a reduction in serum hormones (Testosterone, AR, ER and thyroid hormones) while Estradiol showed no significant increase in all groups except in Mix group in the first month it showed significant increase. The histopathological examination showed changes in the examined sections of liver, testis and thyroid. Conclusion: The obtained results strongly suggest the toxicity and endocrine disruptor effect of CPF and carbaryl and their mixture.

Tist of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	vii
Introduction	1
Aim of the Work	6
Review of Literature	7
Material and Methods	41
Results	90
Discussion	153
Summary	181
Conclusion	184
Recommendations	185
References	186
Arabic Summary	

Tist of Tables

Table No.	Title	Page No.
Table (1):	Effect of Carbaryl, Chlorpyrifos a serum levels of TAC, MDA, Pseudo cholinesterase levels in different groups of rats in the first	PON1 and Serum control group and
Table (2):	Effect of Carbaryl, Chlorpyrifos a serum levels of TAC, MDA, Pseudo cholinesterase levels in different groups of rats in the sec	PON1 and Serum control group and
Table (3):	Effect of Carbaryl, Chlorpyrifos a serum levels of Cholesterol, TG, H AI in control group and different first month.	IDL, LDL, VLDL and groups of rats in the
Table (4):	Effect of Carbaryl, Chlorpyrifos a serum levels of Cholesterol, TG and AI in control group and diff in the second month	, HDL, LDL, VLDL erent groups of rats
Table (5):	Effect of Carbaryl, Chlorpyrifos a serum levels of Testosterone, Es levels in control group and differ the first month.	stradiol, AR and ER ent groups of rats in
Table (6):	Effect of Carbaryl, Chlorpyrifos a serum levels of Testosterone, Es levels in control group and different the second month.	stradiol, AR and ER ent groups of rats in
Table (7):	Effect of Carbaryl, Chlorpyrifos a serum levels of TSH, T3 and T group and different groups of rat	74, levels in control
Table (8):	Effect of Carbaryl, Chlorpyrifos a serum levels of TSH, T3 and 7 group and different groups of month	Γ4 levels in control rats in the second

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Mechanisms of actions of Edisruptor compounds (EDCs)	
Figure (2):	Functional domains of the androgen (AR)	_
Figure (3):	Functional domains of the estrogen (ER).	_
Figure (4):	General chemical structure oraganophosphate compounds	
Figure (5):	Main reactions of phase (I) OP meta	bolism20
Figure (6):	The binding of OP to the active site	of ACHE21
Figure (7):	Structure of Chlorpyrifos	27
Figure (8):	Structure of N-Methyl carbamates	31
Figure (9):	Chemical structure of carbaryl	36
Figure (10):	The structure of HDL particle	39
Figure (11):	Paroxanase 1 standard conc (ng/ml)	
Figure (12):	Calibration curve of total Testostero	one64
Figure (13):	Calibration curve of Estradiol	68
Figure (14):	ER standard concentration	72
Figure (15):	AR standard concentration	76
Figure (16):	Calibration curve of TSH	80
Figure (17):	Calibration curve of T3	84
Figure (18):	Calibration curve of T4	87
Figure (19):	Mean of serum TAC levels mM/L in animal groups in the first and secon pesticides treatments	nd month

Fig. No.	Title	Page No.
Figure (20):	Mean of serum MDA levels n different animal groups in the second month of pesticides treatme	first and
Figure (21):	Mean of serum PON1 levels different animals groups in the second month	first and
Figure (22):	Mean of serum Pseudo Chol activity U/L in different animals a first and second month of treatments.	groups the pesticides
Figure (23):	Percentage of the change in selevels between control and pesticing groups	de treated
Figure (24):	Percentage of the change in ser levels between control and pestici groups	de treated
Figure (25):	Percentage of the change in ser levels between control and different groups	nt animals
Figure (26):	Percentage of the change in service Cholinesterase activity between compesticide treated groups	ontrol and
Figure (27):	Positive correlation between PONI in Mix treated group in the first me	
Figure (28):	Positive correlation between TAC Mix treated group in the first mont	
Figure (29):	Mean of serum Cholesterol levels different animal groups in the second month	first and

Fig. No.	Title	Page No.
Figure (30):	Mean of serum Triacylglycerols lesin different animal groups in the second month	first and
Figure (31):	Mean of serum LDL levels mg/dl in animalsgroups in the first an month.	d second
Figure (32):	Mean of serum HDL levels mg/dl in animals groups in the first armonth.	nd second
Figure (33):	Mean of serum VLDL levels different animals groups in the second month.	first and
Figure (34):	Mean of AI levels in different anim in the first and second month	
Figure (35):	Percentage of the change is Cholesterol levels between cor- pesticide treated groups	ntrol and
Figure (36):	Percentage of the change is Triacylglycerols levels between copesticide treated groups	ontrol and
Figure (37):	Percentage of the change in selevels between control and pesticion groups	de treated
Figure (38):	Percentage of the change in ser levels between control and pesticion groups	de treated
Figure (39):	Percentage of the change in service levels between control and pesticion groups	de treated

Fig. No.	Title	Page No.
Figure (40):	Percentage of the change in A between control and pesticide groups	treated
Figure (41):	Negative correlation between Cholinesterase and AI in Carbaryl the second month	group in
Figure (42):	Mean of serum Testosterone levels different animals groups in the second month.	first and
Figure (43):	Mean of serum Estradiol levels different animals groups in the second month.	first and
Figure (44):	Mean of serum AR levels ng/mL in animals groups in the first and month.	d second
Figure (45):	Mean of serum ER levels ng/mL in animals groups in the first and month.	d second
Figure (46):	Percentage of the change in Testosterone levels between compesticide treated groups	trol and
Figure (47):	Percentage of the change in serum levels between control and pesticid groups	le treated
Figure (48):	Percentage of the change in serum between control and pesticide groups	treated
Figure (49):	Percentage of the change in serum between control and pesticide groups	treated

Fig. No.	Title	Page No.
Figure (50):	Mean of serum TSH levels different animals groups in first month.	and second
Figure (51):	Mean of serum T3 levels ng/ml animals groups in first and second	
Figure (52):	Mean of serum T4 levels µg/dL animals groups in first and second	
Figure (53):	Percentage of the change in s levels between control and pestic groups	ide treated
Figure (54):	Percentage of the change in serum between control and pesticide treates	
Figure (55):	Percentage of the change in serum between control and pesticion groups	le treated

Tist of Abbreviations

Abb.	Full term
AChE	Acetyleholinestorese
	Acetylcholinesterase Adinosine diphosphate
AI	
	Androgen receptor
	Adinosine triphosphate
	Butyril-thiocholine
	Butyrylcholinesterase
Carba	* *
CE	
CHE	
	Cholesterol oxidase
CPF	
CPO	
	DNA binding domain
	Dihydrotestosterone
	5,5- Dithiobis-2-nitrobenzoic acid
DZO	
E2	Estradiol
EDC	Endocrine disrupting chemicals
	Endocrine disrupting pesticides
ER	
FSH	Follicle stimulating hormone
GK	Glycerol kinase
GnRH	Gonadotropin-releasing hormones
GPO	Glycerol phosphate oxidase
GR	Glucocorticoid receptor
HDL	High density lipoprotein
LBD	Ligand binding domain
LDL	Low density lipoprotein
LH	Luteinizing hormone
LPL	Lipoprotein lipase
LPO	Lipid peroxidation
MDA	Malonylaldehyde
MR	Mineralocorticoid receptor

Tist of Abbreviations cont...

Abb.	Full term
DNA	
	messenger ribonucleic acid
	Nuclear export signal
	Nuclear localization signal
NR	
	Neuropathy Target Esterase
OD	<u>.</u>
	Organophosphours
	Organophosphours compound Pseudo cholinesterase
PO	
POD	
PON1	
	Progesterone receptor
PVC	
RLU	
	Reactive oxygen species
RV	
	Standard deviation
	Steroidogenic acute regulatory
T3	
T4	•
	Total antioxidant capacity
	Thiobarbituric acid
TG	
	Thyroid stimulating hormone
US EPA	Unites States Environmental Protection
M DI	Agency
	Very low density lipoprotein
WHU	World health organization

Introduction

The endocrine system is constituted by a large network of hormones allowing the coordinate functions of many different cell types in multicellular organisms. This network possesses numerous loops of stimulation and retroaction in cascade so that the different physiological parameters and physiological functions (such as development, growth, reproduction, etc.) are set in the proper range for the good health of the whole organism and for the survival of the species (Yves Combarnous, 2017).

Endocrine disrupting chemicals (EDCs) are exogenous compounds that have the potential to interfere with hormonal regulation and the normal endocrine system, thereby affecting the health of animals and humans. EDCs can affect an organism's endocrine system in various ways, including the mimicking of endogenous hormones, antagonizing their action or modifying their synthesis, metabolism, and transport (Kojima et al., 2010).

Many EDCs are man- made chemicals that are released into the environment; for example, phthalates, bisphenol, plasticizers, pesticides, flame retardants and alkylphenols (Kojima et al., 2010). Endocrine disrupting pesticides (EDPs) are the largest group of EDCs in numbers compared to other chemical groups (La Fleur & Schug, 2011).

Pesticides are synthetic chemicals that use worldwide for controlling the agricultural and domestic pest. The active component of pesticides is broad and includes Organochlorine,