

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

INVESTIGATION OF DESIGN PARAMETERS AFFECTING WIND-DRIVEN CIRCULATION IN ARTIFICIAL LAKES

By

Mohamed Ahmed Saad Abuseree

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Irrigation and Hydraulics Engineering

INVESTIGATION OF DESIGN PARAMETERS AFFECTING WIND-DRIVEN CIRCULATION IN ARTIFICIAL LAKES

By **Mohamed Ahmed Saad Abuseree**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in

Irrigation and Hydraulics Engineering

Under the Supervision of

Assoc. Prof. Dr. Mohamed Hamdy Abd El Aziz Nour

Associate Professor Irrigation and Hydraulics Department Faculty of Engineering, Cairo University

Dr. Yehya Emad Hamdy Hassan	Prof. Dr. Bernard Laval
Lecturer	Professor
Irrigation and Hydraulics Department	Civil Engineering Department
Faculty of Engineering, Cairo University	Faculty of Applied Sciences,
	University of British Columbia

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2022

INVESTIGATION OF DESIGN PARAMETERS AFFECTING WIND-DRIVEN CIRCULATION IN ARTIFICIAL LAKES

By Mohamed Ahmed Saad Abuseree

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in **Irrigation and Hydraulics Engineering**

Approved by the Examining Committee

Assoc. Prof. Mohamed Hamdy Abd El Aziz Nour, Thesis Main Advisor

Associate Professor

Faculty of Engineering, Cairo University

Prof. Ashraf Hassan Mahib Ghanem, Internal Examiner

Professor of Water Resources Faculty of Engineering, Cairo University

Prof. Aly Nabih El Bahrawy, External Examiner

Professor of Hydraulics Faculty of Engineering, Ain Shams University

> FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2022

Engineer's Name: Mohamed Ahmed Saad Abuseree

Date of Birth: 20/01/1994 **Nationality:** Egyptian

E-mail: mohamedsaadengcvl@gmail.com **Phone:** 01116526590/01023278902

Address: 14 El Maahad El Azhary St. Giza, Egypt

Registration Date: 01/03/2019 **Awarding Date:** / /2022

Degree: Master of Science

Department: Irrigation and Hydraulics Engineering

Supervisors:

Assoc. Prof. Dr. Mohamed Hamdy Abd El Aziz Nour

Dr. Yehya Emad Hamdy Hassan

Prof. Dr. Bernard Laval (University of British Columbia)

Examiners:

Assoc. Prof. Mohamed Hamdy Abd El Aziz Nour

(Thesis main advisor)

Prof. Ashraf Hassan Mahib Ghanem (Internal Examiner)

Prof. Aly Nabih El Bahrawy (External Examiner) Faculty of Engineering, Ain Shams University

Title of Thesis:

Investigation of Design Parameters Affecting Wind-Driven Circulation in Artificial Lakes

Key Words:

Artificial lakes; Lake hydrodynamics; Field measurements; Wind-driven circulation; Delft3D

Summary:

Artificial lakes' parameters are typically determined by urban planners without consideration for circulation. This research was developed to examine design parameters of artificial lakes in order to give design guidelines for artificial lake designers. Field measurements of bathymetry, flow velocities, and drifter tracks were collected from a case study in a residential compound (Lake Dream) and the data were analyzed and processed using MATLAB. A three-dimensional hydrodynamic numerical model was developed using Delft3D. The field data were used to calibrate the model and to demonstrate the considerable effect of sheltering. An idealized basin was developed to simplify the geometry and study the effect of different design parameters with and without wind sheltering effect. By studying different scenarios, it was concluded that, to enhance the horizontal circulation in artificial lakes, the maximum bed slope should be oriented perpendicular to the dominant wind direction with and without considering wind sheltering effect, the aspect ratio effect depends on bed slope, lake orientation and wind sheltering.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have

cited them in the references section.

Name: Mohamed Ahmed Saad Abuseree	Date: / /
Signature:	

Acknowledgments

I would like to thank my supervision committee: Assoc. Prof. Dr. Mohamed Hamdy, Dr. Yehya Imam and Prof. Bernard Laval for their all-time support and for their beneficial advices which helped me to accomplish the thesis.

I would like to specially thank Dr. Yehya Imam for being by my side all the time and for his assistance in the field work measurements.

I also thank my department professors and colleagues for their continuous support.

I also like to thank Eng. Ahmed Abd El Fattah and Eng. Mohamed Adel - the engineers who are responsible for Lake Dream - for facilitating the procedures of the field measurements and for their help whenever it was needed.

Finally, I have to thank all my family: my father, my mother, my siblings and my wife. They were always by my side supporting and encouraging me to finish the thesis.

Table of Contents

DISCLA	IMER	I
ACKNO	WLEDGMENTS	II
TABLE	OF CONTENTS	III
LIST OF	F TABLES	VI
LIST OF	F FIGURES	VII
NOMEN	ICLATURE	XII
ABSTRA	ACT	XIII
CHAPT:	ER 1 : INTRODUCTION	1
1.1.	MOTIVATION	1
1.2.	PROBLEM STATEMENT	
1.3.	Objectives	2
1.4.	ORGANIZATION OF THE THESIS	3
CHAPT	ER 2 : LITERATURE REVIEW	4
2.1	Introduction	4
2.1.		
	E GEOMETRY/BATHYMETRY	
	2.3. Studies of Wind-Driven Circulat	
Сомрі	EX GEOMETRY/BATHYMETRY	5
2.4	. Studies of Inflow/Outflow Circulat	ION IN LAKES OF
SIMPLE	E GEOMETRY/BATHYMETRY	7
2	2.5. STUDIES OF INFLOW/OUTFLOW CIRCULAT	ION IN LAKES OF
COMPL	EX GEOMETRY/BATHYMETRY	10
2.6.		
2.7.	SUMMARY	14
CHAPT	ER 3 : LAKE CATEGORIZATION	15
3.1.	GROUP (1)	17
3.2.	Group (2)	19
3.3.	Group (3)	21
3.4.	Group (4)	22
CHAPT	ER 4 METHODOLOGY	24
4.1.	Numerical Model	24
4.1.1		
4.1.2	1 · · · · · · · · · · · · · · · · · · ·	
	.2.1. Continuity Equation	
	2.3. Hydrostatic Pressure Assumption	

4.1.3.	Numerical Model Assumptions	28
4.1.4.	Model Development	29
4.2.	Idealized Basin	30
4.2.1.	Basin Parameters	30
4.2.2.	Wind sheltering Effect	31
4.2.3.	Measure of Planimetric Circulation	33
4.3.	CASE STUDY	35
4.3.1.		
4.3.2.	1	
4.3.3.	Examination of the Effect of Selected Parameters on Velocity Vectors	s 40
4.3.4.	•	
4.3.5.		
CHAPTI	ER 5 RESULTS AND DISCUSSION	42
5.1.	Idealized Basin	42
5.1.1.	Without Wind Sheltering Effect	42
5.1.	1.1. North Wind (N - 0°)	
5.1.	1.2. North North East Wind (NNE – 22.5°)	
5.1.2.	8	
	2.1. North Wind (N - 0°)	
	2.2. North North East Wind (NNE – 22.5°)	
	 2.3. North East Wind (NE – 45°)	
	2.5. East Wind (E – 90°)	
5.2.		
5.2.1.		
5.2.2.	·	
5.2.3.	•	
5.2.4.		
CHAPTI	ER 6 CONCLUSIONS AND RECOMMENDATIONS	
6.1.	SUMMARY	78
6.2.	Conclusions	
6.3.	RECOMMENDATIONS FOR FUTURE WORK	
	ENCES	
	DIX A: RAW DATA AND PROCESSED VELOCITY DATA	
	AW DATA	
	Transect (1)	
	Transect (2)	
	Transect (4)	
	Transect (4)	
	OCESSED DATA	
	. Transect (1)	
	Transect (2)	
	. Transect (3)	
A.2.4	Transect (4)	91

APPENDIX B: FIELD TRIP PHOTOS	92

List of Tables

Table 3.1: Group (1) Specifications	18
Table 3.2: Group (2) Specifications	
Table 3.3: Group (3) Specifications	
Table 3.4 Group (4) Specifications	
Table 5.1: Nash Sutcliffe Model Efficiency Coefficient for All Transects	73

List of Figures

Figure 1.1: The Distribution of Artificial Lakes in 6 th of October and El Sheikh Zay Cities in Cairo	
Figure 2.1: The 13 cases studied by Persson (2000)	7
Figure 2.2: The 9 cases studied by Jansons (2007)	
Figure 2.3: Typical thermal stratified layers of a lake into epilimnion, metalimnion.	
hypolimnion by Huttula T. (2012)hypolimnion by Huttula T. (2012)	
hyponininon by fructura 1. (2012)	13
Figure 3.1: Shoreline Development Index	15
Figure 3.2: Distribution of Surveyed Artificial Lakes across Egypt	
Figure 3.3: Layout Samples for Artificial Lakes in Egypt	
Figure 3.4: Samples for Group (1)	
Figure 3.5: Samples for Group (2)	
Figure 3.6: Sample for Group (3)	
Figure 3.7: Sample for Group (4)	
11gare 3.7. Sumple 101 Group (1)	22
Figure 4.1: Idealized Rectangular Basin	30
Figure 4.2: Parmaters for Idealized Basin Simulations	
Figure 4.3: Wind Sheltering Stress Distribution by Hansen (2005)	
Figure 4.4: Wind Sheltering Pattern Related to Wind Direction. Black shading indi	
zones with no wind stress	
Figure 4.5: Vorticity Definition	
Figure 4.6: Circulation Cells in Idealized Rectangular Basin	
Figure 4.7: Buildings and Weeds around the Shoreline of Lake Dream	
Figure 4.8: Non-uniform Spatial Wind Distribution in Lake Dream	
Figure 4.9: Acoustic Doppler Profiler Fixed to a Moving Boat by Mueller (2013)	
Figure 4.10: Weather Station Fixed at Site	
Figure 4.11: Drifter Made from Waterproof Plastic Container and Handheld GPS	
Figure 4.12: Inflatable Boat	
Figure 4.13: Transects Traversed by the Acoustic Doppler Profiler	41
Figure 4.14: Tracks Measured by Surface Drifters Deployed at different Locations	in
Lake Dream.	41
Figure 5.1: Total Absolute Vorticity (s ⁻¹) for Different Wind Directions, aspect rati and bed slopes	
Figure 5.2: Applied North Wind without Sheltering	
Figure 5. 3: Total Absolute Vorticity (s ⁻¹) for North (0°) Wind without Sheltering	
Figure 5.4: Comparison between Circulation Cells for Aspect Ratio = 1 and North	••••
Wind Direction without Wind Sheltering. Left panel is for a bed slope of 0%. Right	nt
panel is for a bed slope of 1.5%. Color shading represents horizontal vorticity	-
distribution in the surface layer. Arrows indicate simulated velocity vectors at basis	n
surface	45
Figure 5.5: Comparison between Circulation Cells for Bed Slope = 0% and North V	
Direction without Wind Sheltering. Left panel is for Aspect Ratio of 1. Right panel	
for Aspect Ratio of 3. Color shading represents horizontal vorticity distribution in t	
surface layer. Arrows indicate simulated velocity	

Figure 5.6: Applied NNE Wind without Sheltering46
Figure 5.7: Total Absolute Vorticity (s ⁻¹) for NNE (22.5°) Wind without Sheltering46
Figure 5.8: Comparison between Circulation Cells for Aspect Ratio = 1 and NNE Wind
Direction without Wind Sheltering. Left panel is for a bed slope of 0%. Right panel is
for a bed slope of 1.5%. Color shading represents horizontal vorticity distribution in the
surface layer. Arrows indicate simulated velocity
Figure 5. 9: Comparison between Circulation Cells for Bed Slope = 0% and NNE Wind
Direction without Wind Sheltering. Left panel is for Aspect Ratio of 1. Right panel is
for Aspect Ratio of 3. Color shading represents horizontal vorticity distribution in the
surface layer. Arrows indicate simulated velocity
Figure 5.10: Comparison between Circulation Cells for Bed Slope = 1.5% and NNE
Wind Direction without Wind Sheltering. Left panel is for Aspect Ratio of 1. Right
panel is for Aspect Ratio of 2. Color shading represents horizontal vorticity distribution
in the surface layer. Arrows indicate simulated velocity
Figure 5.11: Applied North Wind Direction with Sheltering
Figure 5.12: Total Absolute Vorticity (s ⁻¹) for North Wind Direction with Sheltering .49
Figure 5.13: Comparison between Circulation Cells for Aspect Ratio = 1 and North
Wind Direction with Wind Sheltering. Left panel is for a bed slope of 0%. Right panel
is for a bed slope of 1.5%. Color shading represents horizontal vorticity distribution in
the surface layer. Arrows indicate simulated velocity
Figure 5.14: Comparison between Circulation Cells for Bed Slope = 0% and North
Wind Direction with Wind Sheltering. Left panel is for Aspect Ratio of 1. Right panel
is for Aspect Ratio of 3. Color shading represents horizontal vorticity distribution in the
surface layer. Arrows indicate simulated velocity
Figure 5.15: Applied NNE Wind Direction with Sheltering
Figure 5.16: Total Absolute Vorticity (s ⁻¹) for NNE (22.5°) Wind Direction with
Sheltering
Figure 5.17: Comparison between Circulation Cells for Aspect Ratio = 1 and NNE
Wind Direction with Wind Sheltering. Left panel is for a bed slope of 0%. Right panel
is for a bed slope of 1.5%. Color shading represents horizontal vorticity distribution in
the surface layer. Arrows indicate simulated velocity
Figure 5.18: Comparison between Circulation Cells for Bed Slope = 0% and NNE
Wind Direction with Wind Sheltering. Left panel is for Aspect Ratio of 1. Middle panel
is for Aspect Ratio of 2. Right panel is for Aspect Ratio of 3. Color shading represents
horizontal vorticity distribution in the surface layer. Arrows indicate simulated velocity
Figure 5.19: Applied NE Wind Direction with Sheltering
Figure 5.20: Total Absolute Vorticity (s ⁻¹) for NE (45°) Wind Direction with Sheltering
Figure 5.21: Comparison between Circulation Cells for Aspect Ratio = 2 and NE Wind
Direction with Wind Sheltering. Left panel is for a bed slope of 0%. Right panel is for a
bed slope of 1.5%. Color shading represents horizontal vorticity distribution in the
surface layer. Arrows indicate simulated velocity
Figure 5.22: Comparison between Circulation Cells for Bed Slope = 0% and NE Wind
Direction with Wind Sheltering. Left panel is for Aspect Ratio of 1. Right panel is for
Aspect Ratio of 3. Color shading represents horizontal vorticity distribution in the
surface layer. Arrows indicate simulated velocity
Figure 5.23: Applied ENE Wind Direction with Sheltering
Figure 5.24: Total Absolute Vorticity (s ⁻¹) for ENE (67.5°) Wind Direction with
Sheltering

Figure 5.25: Comparison between Circulation Cells for Aspect Ratio = 1 and ENE
Wind Direction with Wind Sheltering. Left panel is for a bed slope of 0%. Right panel
is for a bed slope of 1.5%. Color shading represents horizontal vorticity distribution in
the surface layer. Arrows indicate simulated velocity
Figure 5.26: Comparison between Circulation Cells for Bed Slope = 0% and ENE Wind
Direction with Wind Sheltering. Left panel is for Aspect Ratio of 1. Right panel is for
Aspect Ratio of 3. Color shading represents horizontal vorticity distribution in the
surface layer. Arrows indicate simulated velocity58
Figure 5.27: Applied East Wind Direction with Sheltering
Figure 5.28: Total Absolute Vorticity (s ⁻¹) for East (90°) Wind Direction with
Sheltering
Figure 5.29: Comparison between Circulation Cells for Aspect Ratio = 1 and East Wind
Direction with Wind Sheltering. Left panel is for a bed slope of 0%. Right panel is for a
bed slope of 1.5%. Color shading represents horizontal vorticity distribution in the
surface layer. Arrows indicate simulated velocity60
Figure 5.30: Comparison between Circulation Cells for Bed Slope = 1.5% and East
Wind Direction with Wind Sheltering. Left panel is for Aspect Ratio of 1. Right panel
is for Aspect Ratio of 2. Color shading represents horizontal vorticity distribution in the
surface layer. Arrows indicate simulated velocity
Figure 5.31: Raw Data from Weather Station
Figure 5.32: Dominant Wind Direction for Case Study (Lake Dream)
Figure 5.32: Dollmant wind Direction for Case Study (Lake Dieam)
· · · · · · · · · · · · · · · · · · ·
Figure 5.34: Smoothed Data for East-West Velocity Component of Transect (2)64
Figure 5.35: Velocity Vectors and Magnitudes for Basic Conditions of Wind Speed =
10 m/sec, Bed Roughness = 0.02, Horizontal Viscosity = 0.05, Vertical Viscosity = 10
⁴ , Grid Size = 5 m, Time Step = 3 sec. Color shading represents horizontal vorticity
distribution in the surface layer. Arrows indicate simulated velocity
Figure 5.36: Velocity Vectors and Magnitudes for Wind Speed = 5 m/sec. Color
shading represents horizontal vorticity distribution in the surface layer. Arrows indicate
simulated velocity66
Figure 5.37: Velocity Vectors and Magnitudes for Bed Roughness = 0.025. Color
shading represents horizontal vorticity distribution in the surface layer. Arrows indicate
simulated velocity67
Figure 5.38: Velocity Vectors and Magnitudes for Horizontal Viscosity = $0.5 \text{ m}^2/\text{sec}$.
Color shading represents horizontal vorticity distribution in the surface layer. Arrows
indicate simulated velocity67
Figure 5.39: Velocity Vectors and Magnitudes for Vertical Viscosity = 10 ⁻² m ² /sec.
Color shading represents horizontal vorticity distribution in the surface layer. Arrows
indicate simulated velocity68
Figure 5.40: Velocity Vectors and Magnitudes for Grid Size 2.5 m. Color shading
represents horizontal vorticity distribution in the surface layer. Arrows indicate
simulated velocity69
Figure 5.41: Velocity Vectors and Magnitudes for Time Step 1.5 sec. Color shading
represents horizontal vorticity distribution in the surface layer. Arrows indicate
simulated velocity69
Figure 5.42: Example for Non-uniform Wind Distribution Representing Wind
Sheltering Effect. Black shading indicates zones with no wind stress70
Figure 5.43: Velocity Vectors and Magnitudes for Applying Wind Sheltering Example.
Color shading represents horizontal vorticity distribution in the surface layer. Arrows
indicate simulated velocity

Figure 5.44: RMSE for X and Y Coordinates of Simulated Drifters Compared to
Observed Drifters71
Figure 5. 45: Simulated Drifters versus Observed Drifters
Figure 5.46: A Comparison between Field Data and Simulated Data for Surface
Velocity Components at Transect (2). Upper panel represents East-West velocity, lower
panel represents North-South velocity
Figure 5.47: A Comparison between Matched Observed Data and Simulated Data for
Horizontal Velocity Components in Vertical Profiles at Point on Transect (1)74
Figure 5.48: A Comparison between Mismatched Observed Data and Simulated Data
for Horizontal Velocity Components in Vertical Profiles at Point on Transect (3)74
Figure 5.49: Comparison between Circulation Cells and Vorticity for Case Study
Model without Sheltering and Wind from North. Left panel is for a bed slope of 0%.
Right panel is for a bed slope of 1.5%. Color shading represents horizontal vorticity
distribution in the surface layer. Arrows indicate simulated velocity
Figure 5.50: Comparison between Circulation Cells and Vorticity for Case Study
Model of Bed Slope = 1.5% and Wind from North. Left panel is without Wind
Sheltering Effect. Right panel is for Wind Sheltering Effect. Color shading represents
horizontal vorticity distribution in the surface layer. Arrows indicate simulated velocity
Figure 5.51: Comparison between Total Absolute Vorticity (s ⁻¹) for Different Scenarios
of Case Study
Figure 5.52: Estimated Sheltering Pattern Applied to Case Study. Black shading
indicates zones with no wind stress
Figure 5.53: A Comparison between Field Data and Simulated Data for Surface
Velocity Components at Transect (2) after Applying Sheltering. Upper panel represents
versetty components at Transcet (2) after Tippijing Sheltering. Epper panel represents
East-West velocity, lower panel represents North-South velocity
East-West velocity, lower panel represents North-South velocity77
Figure 6.1: Bed Slope Applied Perpendicular to Dominant Wind Direction to Induce
Figure 6.1: Bed Slope Applied Perpendicular to Dominant Wind Direction to Induce Planimetric Circulation in Shallow Lakes
Figure 6.1: Bed Slope Applied Perpendicular to Dominant Wind Direction to Induce Planimetric Circulation in Shallow Lakes
Figure 6.1: Bed Slope Applied Perpendicular to Dominant Wind Direction to Induce Planimetric Circulation in Shallow Lakes
Figure 6.1: Bed Slope Applied Perpendicular to Dominant Wind Direction to Induce Planimetric Circulation in Shallow Lakes
Figure 6.1: Bed Slope Applied Perpendicular to Dominant Wind Direction to Induce Planimetric Circulation in Shallow Lakes
Figure 6.1: Bed Slope Applied Perpendicular to Dominant Wind Direction to Induce Planimetric Circulation in Shallow Lakes
Figure 6.1: Bed Slope Applied Perpendicular to Dominant Wind Direction to Induce Planimetric Circulation in Shallow Lakes
Figure 6.1: Bed Slope Applied Perpendicular to Dominant Wind Direction to Induce Planimetric Circulation in Shallow Lakes
Figure 6.1: Bed Slope Applied Perpendicular to Dominant Wind Direction to Induce Planimetric Circulation in Shallow Lakes
Figure 6.1: Bed Slope Applied Perpendicular to Dominant Wind Direction to Induce Planimetric Circulation in Shallow Lakes
Figure 6.1: Bed Slope Applied Perpendicular to Dominant Wind Direction to Induce Planimetric Circulation in Shallow Lakes
Figure 6.1: Bed Slope Applied Perpendicular to Dominant Wind Direction to Induce Planimetric Circulation in Shallow Lakes
Figure 6.1: Bed Slope Applied Perpendicular to Dominant Wind Direction to Induce Planimetric Circulation in Shallow Lakes
Figure 6.1: Bed Slope Applied Perpendicular to Dominant Wind Direction to Induce Planimetric Circulation in Shallow Lakes
Figure 6.1: Bed Slope Applied Perpendicular to Dominant Wind Direction to Induce Planimetric Circulation in Shallow Lakes
Figure 6.1: Bed Slope Applied Perpendicular to Dominant Wind Direction to Induce Planimetric Circulation in Shallow Lakes
Figure 6.1: Bed Slope Applied Perpendicular to Dominant Wind Direction to Induce Planimetric Circulation in Shallow Lakes
Figure 6.1: Bed Slope Applied Perpendicular to Dominant Wind Direction to Induce Planimetric Circulation in Shallow Lakes
Figure 6.1: Bed Slope Applied Perpendicular to Dominant Wind Direction to Induce Planimetric Circulation in Shallow Lakes
Figure 6.1: Bed Slope Applied Perpendicular to Dominant Wind Direction to Induce Planimetric Circulation in Shallow Lakes