

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

Correlation of Phenotype-genotype in Egyptian patients with familial Mediterranean fever

A thesis submitted for the award of M.Sc. degree in Biochemistry

Submitted by

Rehab Muhammad Abdul-Mawgoud Muhammad

(B.Sc. in Biochemistry, 2010)

Under supervision of

Prof. Dr. Magdy M. Mohamed

Professor of Biochemistry
Department of Biochemistry
Faculty of Science
Ain Shams University

Prof. Dr. Hamed A. El-Khayat

Professor of Pediatrics
Department of Pediatrics
Faculty of Medicine
Ain Shams University

Prof. Dr. Osama K. Zaki

Consultant of Genetic diseases Medicine
Ain Shams University Hospitals
Faculty of Medicine
Ain Shams University

Faculty of Science Ain Shams University 2022

Acknowledgment

First and foremost, I am extremely grateful to God, the source of all knowledge, by whose abundant aid this work has come to fruition.

My deepest gratitude is to my supervisor, **Prof. Dr. Magdy M. Mahmoud**, Professor of Biochemistry, Department of Biochemistry, Faculty of Science, Ain Shams University, for his invaluable advice, continuous support, and patience during my Master's thesis. He supported me during writing, carefully read and revised my thesis. His immense knowledge and plentiful experience have encouraged me in all the time of my academic research.

I would like to express my sincere gratitude to my research supervisor, **Prof. Dr. Hamed Ahmad El-Khayat**, Professor of Pediatrics, Faculty of Medicine, Department of Pediatrics, Ain Shams University Hospitals, for giving me the opportunity to do research and providing invaluable guidance throughout this research.

I would like to say a special thank and sincere gratitude you to my supervisor, Prof. Dr. Osama X. Zaki, Consultant of Genetic diseases Medicine, Ain Shams University Hospitals, Faculty of Medicine, for his patient support, guidance and overall insights in this field that have made this study an inspiring experience for me. He has taught me the methodology to carry out the research and to present the research works as clearly as possible. It was a great privilege and honor to work and study under his guidance.

Most importantly, none of this could have happened without my family. To my parents, I must express my very profound gratitude to you for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis.

Approval Sheet

Title of the M.Sc. thesis

Correlation of Phenotype-genotype in Egyptian patients with familial Mediterranean fever

Submitted by **Rehab Muhammad Abdul-Mawgoud Muhammad**

(B.Sc. in Biochemistry, 2010)

Supervision Committee:

-Prof. Dr. Magdy Mahmoud Mohamed Professor of Biochemistry, Faculty of

Science, Ain Shams University.

-Prof. Dr. Hamed Ahmad El-Khayat Professor of pediatrics-Department of

Pediatrics- Faculty of Medicine-Ain

Shams University Hospitals.

-Prof. Dr. Osama Kamal Zaki Consultant of medical genetics,

Faculty of Medicine, Ain Shams

University

Examiners committee:

-Prof. Dr. Magdy Mahmoud Mohamed Professor of Biochemistry, Faculty of

Science, Ain Shams University

-Prof. Dr. Ahmed Mohammed Kamal Nada Professor of Molecular biology, Faculty of

Biotechnology, MSA university.

-Prof. Dr. Hanem Mohammed Ahmed Professor of Biochemistry, Theodor

Bilharz Research Institute.

Contents

List of Figuresi
List of Tablesiv
List of Abbreviations vii
Abstractviii
Introduction1
Aim of the work5
Review of Literature6
1. Types of Familial Mediterranean fever6
1.1. Clinical classification6
1.2. Genetic classification7
1.3. Causes of FMF7
1.4.Mode of inheritance of FMF9
1.5.Prevalence of FMF and the frequency of MEFVgene mutations all over the world12
1.6.Molecular genetics of FMF and genetic mutations in MEFV gene29
1.6.1. Pyrin Protein Characterization36
1.7. The spectrum of FMF mutations and origin of the most common MEFV gene mutations in FMF patients around the world
1.8. Diagnosis of FMF43
1.8.1. Clinical Diagnosis: Tel Hashomer Clinical Criteria45
1.8.2. Molecular Genetic Testing47
1.8.3. Colchicine Trial49
1.9. Management and treatment of FMF50
1.10. Treatment of FMF acute manifestations51
1.11.Surveillance of FMF52

List of Figures

Figure (1):	Scheme shows the role of Pyrin, or meranostrin protein, the product of <i>MEFV</i> gene, in immune response9
Figure (2):	Autosomal recessive inheritance manner of FMF
Figure(3): Other	r cases may result from new (denovo) mutations in the gene
Figure (4):	Prevalence of FMF among different countries
Figure (5):	Structure of chromosome 16 and Cytogenetic Location of <i>MEFV</i> gene on chromosome30
Figure (6):	Schematic structure of the MEFV gene30
Figure (7):	Distribution of mutations among 10 exons of MEFV gene33
Figure (8):	Distribution of mutations regarding to pathogenicity and their effects34
Figure (9):	The spectrum of MEFV mutations35
Figure (10):	3D model protein structure of Normal pyrin
Figure (11):	Amino acids sequence of MEFV gene giving 781 amino acids
Figure (12):	World map showing the countries where familial Mediterranean fever (FMF) is relatively common41
Figure (13): Mag	p suggesting likely distribution of two main mutations responsible for FMF41
Figure (14):	The resulting strip from hybridization process

List of Figures (cont.)

Figure (15):	Bar-Chart for the percentage of the geographic distribution of our FMF study population in Egyptian governorates.	75
Figure (16):	Agarose (1.5%) Gel Electrophoresis for PCR product	76
Figure (17):	Poly acryl amide Gel Electrophoresis for PCR product	77
Figure (18):	Strip assay results for MEFV 12 single heterozygous mutations	78
Figure (19):	Strip assay results for MEFV 12 single homozygous mutations	79
Figure (20):	Strip assay results for MEFV 18 double compound heterozygous mutations and 4 triple compound heterozygous mutations	80
Figure (21):	The percentage frequency of the 12 single mutations tested in the MEFV gene that is found in our study population.	82
Figure (22):	Percentage frequency of heterogeneity of all mutations in our study population (N=244)	86
Figure (23):	Bar-Chart for the frequency percentage of heterozygous single mutations among FMF study population	87
Figure (24):	Bar-Chart for the frequency percentage of compound heterozygous mutations among FMF study population	88
Figure (25):	Bar-Chart for the frequency percentage of homozygous mutations among FMF study population	89

List of Figures (cont.)

Figure (26):	Gender distribution among the common FMF mutations91
Figure (27):	Bar-Chart for the percentage of all symptoms and phenotypes among FMF study population
Figure (28):	Distribution of patients with M694I mutation among different phenotypes102
Figure (29):	Distribution of patients with E184Q mutation among different phenotypes104
Figure (30):	Distribution of patients with V726A mutation among different phenotypes106
Figure (31):	Distribution of patients with M680I mutation among different phenotypes107
Figure (32):	Distribution of patients with M694V mutation among different phenotypes109

List of tables

Table (1):	Most frequent mutations according to various ethnic groups and countries	40
Table (2):	Classification of Tel Hashomer clinical criteria for clinical diagnosis of FMF	45
Table (3):	The Demographic distribution of 244 FMF patients	72
Table (4):	The clinical characterization of studied population	73
Table (5):	The geographic distribution of patients with FMF in our study in Egyptian governorates	74
Table (6):	The percentage frequency of the 12 single mutation tested in the MEFV gene in study population (N=155)	81
Table (7):	The percentage frequency of the 17 double compound mutations were found in the MEFV gene in our study population (N=83).	83
Table (8):	The percentage frequency of the 4 triple mutations were found in the MEFV gene in our study population (N=6)	84
Table (9):	Percentage frequency of heterogeneity of all mutations in our study population (N=244)	85
Table (10):	Median levels of age (years) among FMF patients according to the mutation heterogeneity.	90
Table (11):	Gender distribution among the common FMF mutations	91
Table (12):	The phenotypical characters of studied population (N=244)	92

List of tables (Cont.)

Table (13):	Family History distribution among common FMF mutations	93
Table (14):	Median levels of age of onset (years) among FMF patients according to the mutation heterogeneity.	94
Table (15):	Frequency percentage of attack per month among patients with different FMF mutations	96
Table (16):	Percentage frequency of duration of attack among patients with different FMF mutations	97
Table (17):	Percentage frequency of all symptoms and phenotypes among FMF study population (N=244)	98
Table (18):	Percentage frequency of Clinical symptoms among the common FMF mutations	. 100
Table (19):	Percentage frequency of Clinical phenotypes as regards heterogeneity of mutation M694I	. 101
Table (20):	Percentage frequency of Clinical phenotypes as regards heterogeneity of mutation E148Q	. 103
Table (21):	Percentage frequency of Clinical phenotypes as regards heterogeneity of mutation V726A	. 105
Table (22):	Percentage frequency of Clinical phenotypes as regards heterogeneity of mutation M680I	. 107
Table (23):	Percentage frequency of Clinical phenotypes as regards heterogeneity of mutation M694V	. 108

List of tables (Cont.)

Table (24):	Percentage frequency of abdominal surgeries done among most common FMF mutations 110
Table (25):	Relation between severity score median as regards heterogeneity of mutations
Table (26):	Percentage frequency of Severity score categories among our FMF study population (N= 244)
Table (27):	Percentage frequency of severity score categories regards heterogeneity of all mutations in our study population
Table (28):	Percentage frequency of severity score categories among all patients with different common FMF mutations
Table (29):	Percentage frequency of severity score categories as regards to heterogeneity of mutation M694I
Table (30):	Percentage frequency of severity score categories as regards heterogeneity of mutation E148Q
Table (31):	Percentage frequency of severity score categories as regards heterogeneity of mutationV726A
Table (32):	Percentage frequency of severity score categories as regards heterogeneity of mutation M680I(G/A)
Table (33):	Percentage frequency of severity score categories as regards heterogeneity of mutation M694V
Table (34):	Percentage frequency of severity score categories as regards heterogeneity of mutation M680I(G/C))

List of Abbreviations

FMF : Familial Mediterranean Fever

MEFV : Mediterranean fever gene

IL-1 : Interleukin-1

IL-1β : Interleukin-1 beta

AA : Amyoloid A

SAA1 : Serum amyloid A type 1

NSAIDs : Non Steroidal Anti-Inflammatory Drugs

ELE : Erysipelas-like erythema

MICA : Major Histocompatibility Complex class I

chain-related gene A

Abstract

Familial Mediterranean fever (FMF) is the most prevalent autosomal recessive disease that affects the ethnic groups living around the Mediterranean basin mainly Jews, Turks, Armenians, Greeks and Arabs. The causative Mediterranean fever (MEFV) gene is located on the short arm of chromosome 16p13.3 with more than 374 gene mutations and polymorphisms. The present study aimed to explore the frequency of common MEFV mutations among patients with FMF in Egypt and associate the phenotyping with genotyping in the FMF Egyptian patients. This study was carried out in Genetic unit in Ain-Shams Hospital (EL-Demerdash) from the period of June 2015 to 2019. A total number of attendant patients enter he unit were 480 patients suspected for FMF and diagnosed according to Tel-Hashomer criteria. A blood sample was withdrawn from each FMF patient for Molecular genetics study using DNA isolation followed by PCR amplification followed by hybridization (This assay covers 12 mutations in the MEFV gene: E148Q, P369S, F479L, M680I (G/C), M680I (G/A), I692deI, M694V, M691V, K695R, V726A, A744S, R761H). The study showed that E148Q, M694I, V726A, M680I and M694V are the most common mutations of MEFV gene, whereas F479L and I692deI mutations were not detected in our study population. The common heterozygous mutations shown in this study were E148Q, M694I, V726A, M694V, and A744S. Meanwhile, the common homozygous mutations were

M694I and M680I. The common compound mutations were M694I / V726A and M680I / V726A.Our results showed complex mutations other than previously recorded. These complexes are E148Q / M694 I / V726A, E148Q / M694I / A744S, E148Q / M680I (G/C) / M694I, and E148Q / M680I(G/A) / V726A. Moreover, we detected a compound homozygous E148Q/M694I. The higher rate of FMF mutations were in Monufia and BeniSuef governorates. Abdominal pain, arthritis, as well as combined presentations are significantly higher in heterozygous than in compound. Conversely, chest pain was significantly higher in compound than heterozygous of E148Q mutation. The combined and arthritis phenotyping were statistically higher in E148Q mutation in comparison with the other mutations. The 5 common FMF mutations were recorded 2.75 times in patients have non-abdominal surgeries than were recorded in patients of abdominal ones. The most sensitive symptoms that predict the mutations were vomiting for V726A, weakness, fatigue, and myalgia for M680I, arthritis and vomiting for E148Q, and vomiting for M694I. These results provided a source for studying the frequency of common MEFV mutations among Egyptian patients with FMF and contribute to a better understanding the association between the phenotyping and genotyping in those patients. Finally, we recommend a larger scale population screening and sequencing of the whole MEFV gene, searching for new and uncommon mutations belong to Egyptian population specifically.