

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

Ain Shams University
Faculty of Science
Chemistry Department

Specific Versus Nonspecific Solvent Effects on the Intramolecular Charge Transfer in Aminonapthalene Derivatives

A Thesis

Submitted for the Degree of Master of Science

As Partial Fulfillment for Requirements of Master of Science

"Chemistry Department"

By

Yara Mohamed Abdel-Wakil Hagras

B.Sc. in Special Chemistry, Faculty of Science, Alexandria University 2015

Under Supervision of

Prof. Dr. Ayman Ayoub Abdel-Shafi

Professor of Inorganic and photochemistry, Faculty of Science,

Ain Shams University

Dr. Hesham Samir Abdel-Samad

Associated professor of Physical Chemistry, Faculty of Science, Ain Shams University

Dr. Dina Salah Eldin Mohamed Abdelrahman

Lecturer of Biophysics, Department of Physics, Faculty of Science, Ain Shams University

2022

Ain Shams University
Faculty of Science
Chemistry Department

Approval Sheet

Specific versus nonspecific solvent effects on the intramolecular charge transfer in aminonapthalene derivatives

By

Yara Mohamed Abdel-Wakil Hagras

B.Sc. in Special Chemistry, Faculty of Science, Alexandria University 2015

This Thesis for master's degree has been approved by:

Prof. Dr. Ayman Ayoub Abdel-Shafi

Professor of Inorganic and photochemistry, Faculty of Science, Ain Shams University

Dr. Hesham Samir Abdel-Samad

Associated professor of Physical Chemistry, Faculty of Science, Ain Shams University.

Dr. Dina Salah Eldin Mohamed Abdelrahman

Lecturer of Biophysics, Faculty of Science, Ain Shams University.

Head of Chemistry Department

Prof. Dr. Ayman Ayoub Abdel-Shafi

Ain Shams University Faculty of Science Chemistry Department

Student Name: Yara Mohamed Abdel-Wakil Hagras

Scientific Degree: M.Sc.

Faculty Name: Faculty of Science, Alexandria University, Chem-

istry Department

Graduation Year: 2015

Granting Year: 2022

Acknowledgment

In fact, I would like to thank God for enerything in my life and I hope I gainHis satisfaction in every step I take.

It is with genuine gratitude and warm regard that Idedicate this work to my Mom, Ashwaa El-Shaboury, May God bless her soul and I would like to thank you Mom for all your efforts and support to me. I know Ishould have thanked you many times before but Ididn't, knowing that you realized my gratitude.

And I also would like to dedicate my work to Dr. Ayman Ayoub Abdel-Shafi. Despite your work pressures, you gave me the time to help me out, I totally appreciate it. Thank you. Also I am honored to have Dr. Hisham Samir among my supervisors, and I thank him for trying to do his utmost to make this thesis a complete success. I want to thank you, Dr. Dina Salah, for all you have given me of knowledge. Dr. Ahmed El-Azaly, thank you so much for the time and effort you made to help me. I wish you a happy and successfullife.

Finally, my husband Ahmed Essam El-din, you did not only teach me what is good in life but also inspired me to dowell in life. You are a great partner and a good human being. Thank you for helping me having a successful life. AndMay God give us the blessing of our child.

Yara Hagrass

Contents

List of Figures	viii
List of Tables	xiii
List of Symbols	xiiiv
List of Abbreviations	i
Aim of the work	iv
Summary	v
Chapter I	1
1-Introduction and Overview	1
1.1 Intermolecular Charge transfer process (ICT)	1
1.2 Application of excited intramolecular charge transfer .	9
1.3 Effect of hydrogen-bonding on ICT	10
1.4 Effect of solvents on the ICT	13
1.5 Solvent effects on the intramolecular charge transfer in	naph-
thalene and aminonaphthalene derivatives	20
Chapter II	30
2 Materials and Methods	30
2.1 Materials	30

2.2 UV-visible spectroscopy	31
2.3 Photoluminescence	31
2.3.1 Fluorescence Quantum Yield	31
2.4 Photoluminescence Lifetime	33
2.4.1 Time Resolved Fluorescence Lifetime Measurem	nents.33
2.4.2 Fluorescence lifetime (FLT)	34
2.5 The Fluorescence Decay	34
Chapter III	38
3-Results and discussion	38
3.1 Steady-State Measurement	38
Chapter IV	102
4-Conclusions	102
5 Deferences	102

List of Figures

Figure 1.1	:	The intramolecular charge-transfer Processes	3
Figure 1.2	:	Schematic representation of intramolecular charge	
		transfer (ICT) process in a model system	5
Figure 1.3	:	Jabłoński diagrams of various energy/electron donor–acceptor (D–	
		A) systems	8
Figure 1.4	:	2-naphthylamine-6-sulfonate (2NA6S)	28
Figure 1.5	:	1-naphthylamine-4-sulfonate (1NA4S)	28
Figure 2.1	:	Fluorescence quantum yields (Φ_f) were evaluated using the following Eq1	31
Figure 2.2	:	The decay of the molecule from the excited state to the electronic	
		ground state can be expressed by Eq2	34
Figure 2.3	:	In terms of rate constants ($k_{ m r}$ radiative rate, $k_{ m nr}$ non-radiative	
		rate) the lifetime can be written as Eq3, which can be compared to	
		the fluorescence quantum yield (Φ)	35
Figure 3.1	:	Normalized absorption and fluorescence emission spectra of $5\mu M$	
		1NA4S in Water	39
Figure 3.2	:	Normalized absorption and fluorescence emission spectra of $5\mu M$	
		1NA4S in Methanol	40
Figure 3.3	:	Normalized absorption and fluorescence emission spectra of $5\mu M$	
		1NA4S in Ethanol.	41
Figure 3.4	:	Normalized absorption and fluorescence emission spectra of $5\mu M$	
		1NA4S in Propanol	42
Figure 3.5	:	Normalized absorption and fluorescence emission spectra of $5\mu M$	
		1NA4S in Iso – Butanol	43
Figure 3.6	:	Normalized absorption and fluorescence emission spectra of 5µM	
		1NA4S in 1 – Butanol	44

Figure 3.7	:	Normalized absorption and fluorescence emission spectra of $5\mu M$ 1NA4S in Ethyl acetate	45
Figure 3.8	:	Normalized absorption and fluorescence emission spectra of $5\mu M$ 1NA4S in Acetonitrile	46
Figure 3.9	:	Normalized absorption and fluorescence emission spectra of $5\mu M$ 1NA4S in Dimethylformamide	47
Figure 3.10	:	Normalized absorption and fluorescence emission spectra of $5\mu M$ 1NA4S in Dimethyl sulfoxide	48
Figure 3.11	:	Normalized absorption and fluorescence emission spectra of $5\mu M$ 2NA6S in Water	50
Figure 3.12	:	Normalized absorption and fluorescence emission spectra of $5\mu M$ 2NA6S in Methanol	51
Figure 3.13	:	Normalized absorption and fluorescence emission spectra of 5µM 2NA6S in Ethanol	52
Figure 3.14	:	Normalized absorption and fluorescence emission spectra of 5µM 2NA6S in 2-Propanol	53
Figure 3.15	:	Normalized absorption and fluorescence emission spectra of $5\mu M$ 2NA6S in Iso – Butanol	54
Figure 3.16	:	Normalized absorption and fluorescence emission spectra of $5\mu M$ 2NA6S in 1 – Butanol	55
Figure 3.17	:	Normalized absorption and fluorescence emission spectra of $5\mu M$ 2NA6S in Ethyl acetate	56
Figure 3.18	:	Normalized absorption and fluorescence emission spectra of $5\mu M$ 2NA6S in Acetonitrile	57
Figure 3.19	:	Normalized absorption and fluorescence emission spectra of $5\mu M$ 2NA6S in Dimethylformamide	58
Figure 3.20	:	Normalized absorption and fluorescence emission spectra of $5\mu M$ 2NA6S in Dimethyl sulfoxide	59

Figure 3.21	:	Fluorescence emission decay of 1NA4S in water (fit=yellow	
		line)IRF=instrument response file	62
Figure 3.22	:	Fluorescence emission decay of 1NA4S in Methanol (fit=yellow	
		line)IRF=instrument response file	63
Figure 3.23	:	Fluorescence emission decay of 1NA4S in Ethanol (fit=yellow line)	
		IRF=instrument response file	64
Figure 3.24	:	Fluorescence emission decay of 1NA4S in 2-propanol (fit=yellow	
		line) IRF=instrument response file	65
Figure 3.25	:	Fluorescence emission decay of 1NA4S in 1 – butanol (fit=yellow	
		line) IRF=instrument response file	66
Figure 3.26	:	Fluorescence emission decay of 1NA4S in Iso – butanol (fit=yellow	
		line) IRF=instrument response file	67
Figure 3.27	:	Fluorescence emission decay of 1NA4S in Ethyl acetate(fit=yellow	
		line) IRF=instrument response file	68
Figure 3.28	:	Fluorescence emission decay of 1NA4S in Acetonitrile (fit=yellow	
		line) IRF=instrument response file	69
Figure 3.29	:	Fluorescence emission decay of 1NA4S in Dimethylforma-	
		mide(fit=yellow line)IRF=instrument response file	
			70
Figure 3.30	:	Fluorescence emission decay of 1NA4S in Dimethyl sulfox-	
		ide(fit=yellow line) IRF=instrument response file	
		•••••	7 1
Figure 3.31	:	Fluorescence emission decay of 2NA6S in water (fit=yellow line).	73
Figure 3.32	:	Fluorescence emission decay of 2NA6S in Ethanol (fit=yellow line)	
		IRF=instrument response file	74
Figure 3.33	:	Fluorescence emission decay of 2NA6S in Methanol (fit=yellow	
		line) IRF=instrument response file	75
Figure 3.34	:	Fluorescence emission decay of 2NA6S in 1 – butanol (fit=yellow	
		line) IRF=instrument response file	76

Figure 3.35	:	Fluorescence emission decay of 2NA6S in Iso – butanol (fit=yellow	
		line) IRF=instrument response file	77
Figure 3.36	:	Fluorescence emission decay of 2NA6S in Dimethyl sulfoxide	
		(fit=yellow line) IRF=instrument response file	78
Figure 3.37	:	Fluorescence emission decay of 2NA6S in Dimethylformamide	
		(fit=yellow line) IRF=instrument response file	79
Figure 3.38	:	Fluorescence emission decay of 2NA6S in Acetonitrile (fit=yellow	
		line IRF=instrument response file	80
Figure 3.39	:	Fluorescence emission decay of 2NA6S in Ethyl acetate (fit=yellow	
		line) IRF=instrument response file	81
Figure 3.40	:	Dependence of the Stokes shift, Δv , on the solvent polarity param-	
		eter, $E_{\mathrm{T}}^{\mathrm{N}}$	86
Figure 3.41	:	Calculated values of the absorption energy, v_a according to Kam-	
		let-Taft Eq. (3.14) versus their corresponding experimental values,	
		for 1NA4S and 2NA6S	89
Figure 3.42	:	Calculated values of the emission energy, ν_e according to Kamlet-	
		Taft Eq. (3.14) versus their corresponding experimental values, for	
		1NA4S and 2NA6S.	90
Figure 3.43	:	Calculated values of the Stokes shift, $\Delta \nu$, according to Kamlet-Taft	
		Eq. (3.14) versus their corresponding experimental values, for	
		1NA4S and 2NA6S	91
Figure 3.44	:	Calculated values according to Catalán Eq. (3.15) versus experi-	93
		mental values of absorption energy, v_a for 1NA4S and 2NA6S	
Figure 3.45	:	Calculated values according to Catalán Eq. (3.15) versus experi-	
		mental values of emission energy, vefor 1NA4S and 2NA6S	94
Figure 3.46	:	Calculated values according to Catalán Eq. (3.15) versus experi-	95
		mental values of Stokes shift Av. for 1NA4S and 2NA6S	

Figure 3.47	:	: Calculated values of the absorption energy, v_a , according to Lau-	
		rence's treatment (Eq. (3.16) versus their corresponding experi-	
		mental values for 1NA4S and 2NA6S	99
Figure 3.48	:	Calculated values of the emission energy, ν_e , according to Lau-	
		rence's treatment (Eq. (3.16) versus their corresponding experi-	
		mental values for 1NA4S and 2NA6S	100
Figure 3.49	:	Calculated values of the Stokes shift, $\Delta \nu$, according to Laurence's	
		treatment (Eq. (3.16) versus their corresponding experimental val-	
		ues for 1NA4S and 2NA6S.	101

List of Tables

Table 1 : Photophysical data of 1NA4S in different solvents.

Table 2 : Photophysical data of 2NA6S in different solvents.

List of Symbols

Symbol	Scientific meaning
A	Absorbance
C	Concentration
Е	Energy
$\Phi_{ m f}$	Fluorescence quantum yield
Φ_{u}	Fluorescence quantum yieldof unknown
Φ_{S}	Fluorescence quantum yieldof Standard
n	Refractive index
F	fluorescence spectra
I_{o}	intensity at zero time (upon excitation)
I(t)	intensity at time t
τ	lifetime
t	Time
$ au_q$	Excited state fluorescence lifetime in presence of
$ au_0$	quencher Excited state fluorescence lifetime in absence of quencher
${ m I_f}$	Fluorescence intensity
$k_{\mathrm{f}}/k_{\mathrm{r}}$	Radiative rate constant