

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

ROLE OF FDG PET/CT IN EVALUATION OF PATIENTS WITH METASTATIC CANCER BREAST

Thesis

Submitted for partial fulfillment of The MD degree in radio-diagnosis

By

Dina Abdallah Abbas Hamed

(M.B.B.Ch.)
Faculty of medicine
Cairo University
(MSc Radiodiagnosis)
Faculty of Medicine - Ain Shams University

Under Supervision of

Prof. Dr. Aida Mohamed El-Shibiny

Professor of Radiodiagnosis Faculty of Medicine - Ain Shams University

Dr. Khalid Muhammad Taalab

Consultant of Nuclear Medicine Armed Forces Hospitals

Dr. Merhan Ahmed Nasr

Assistant Professor of Radiodiagnosis Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2022

سورة البقرة الآية: ٣٢

Acknowledgement

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Aida**Mohamed El-Shibing, Professor of Radiodiagnosis - Faculty of Medicine- Ain Shams University for her keen guidance, kind supervision, valuable advice, and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr.** Khalid Muhammad Taalab, Consultant of Nuclear Medicine Armed Forces Hospitals, for his kind care, continuous supervision, valuable instructions, constant help, and great assistance throughout this work.

I am deeply thankful to **Dr. Merhan**Ahmed Masr, Assistant Professor of Radiodiagnosis Faculty of Medicine - Ain Shams University, for her great help, active participation and guidance.

Dina Abdallah

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	v
Introduction	1
Aim of the Work	3
Review of Liturature	
Anatomy of the Breast	4
Pathology of Breast Carcinoma	15
Technique	46
Clinical Utility of ¹⁸ F-FDG-PET/CT in Man Metastatic Breast Cancer	_
Molecular Subtype Behavior	95
Bone Metastasis Assessment	101
Patients and Methods	116
Results	123
Case Presentation	
Discussion	
Summary and Conclusion	167
References	172
Arabic Summary	

List of Abbreviations

Abbreviations	Full term	
¹⁸ F	¹⁸ -fluorine	
¹⁸ -FDG	¹⁸ -fluorodeoxyglucose	
¹⁸ -FDG-	18-fluorodeoxyglucose-Positron emission	
PET/CT	tomography-Computed tomography	
¹⁸ F-NaF	¹⁸ F-Sodium Fluoride	
¹⁸ F-NaF	¹⁸ F-Sodium Fluoride-Positron emission	
PET/CT	tomography-Computed tomography	
99mTc	Technetium-99m	
ADP	Adenosine diphosphate	
AJCC	American Joint Committee on Cancer	
ALN	Axillary lymph node	
BC	Breast cancer	
BRCA1	Breast cancer antigen 1	
BRCA2	Breast cancer antigen 2	
CT	Computed tomography	
DCIS	Ductal carcinoma in situ	
DICOM	Digital imaging and Communications in medicine	
DNA	Deoxy-riboneuclic-acid	
EGFR	Epidermal growth factor receptor	
ER	Estrogen receptors	
ESMO	European Society for Medical Oncology	
GLUT	Glucose transporters	
HER2	Human epidermal growth factor receptor 2	
HR-	Human receptor negative	
HR-/HER2-	Hormonal receptor negative/ Human epidermal growth factor receptor 2 negative	
	Hormonal receptor-negative / Human epidermal	
HR-/HER2+	growth factor receptor 2 positive	
HR+	Human receptor positive	
IDC	Invasive ductal carcinoma	
ILC	Invasive lobular carcinoma	
IUCC	International Union for Cancer Control	

Abbreviations	Full term	
Kvp	Killo-voltage	
LABC	Locally advanced breast cancer	
LCIS	Lobular carcinoma in situ	
mA	Milli-ampere	
MBC	Metastatic breast cancer	
MBq	Milli-becquerel	
mCi	Milli-curie	
mGv	Milligray	
MRI	Magnetic resonance imaging	
mSv	Milli-sievert	
MTV	Metabolic tumor volume	
NCCN	National Comprehensive Cancer Network	
pCR	Complete pathological response	
PET	Positron emission tomography	
PET/CT	Positron emission tomography-Computed	
rei/Ci	tomography	
PET/MRI	Positron emission tomography-magnetic	
	resonance imaging	
PHT	Post-menopausal hormone therapy	
PR	Progesterone receptors	
SEER	Surveillance, Epidemiology, and End Results	
SNB	Sentinel node biopsy	
SPSS	Statistical package for the social science	
SUV	Standardized uptake value	
SUVmax	Maximum-Standardized uptake value	
TLG	Tumor lesion glycolysis	
TN	Triple negative	
TNBC	Triple negative breast cancer	
TNF	Tumor necrosis factor	
TNM	Tumor, Node, and Metastasis	
US	Ultrasound	
WB-MRI	Whole-body Magnetic resonance imaging	
WB-MTV	Whole-body Metabolic tumor volume	
WB-TLG	Whole-body Tumor lesion glycolysis	

List of Tables

Table No.	Title	Page No.
Table (1): Table (2):	Breast cancer susceptibility genes Immunohistochemically Criteria	for
Table (3):	Defining Breast Cancer Molecu Subtypes	41
Table (5):	Systemic treatment recommendations subtypes	
Table (4):	Common PET radioisotopes	57
Table (5):	Studies Evaluating the Decrease of S max during NAC for Breast Cancer w FDG PET (/CT)	rith
Table (6):	Demographic characteristics of studied cases	
Table (7):	Sites of distant metastases among studied cases (patient-based analysis).	
Table (8):	Metastatic lesion sites as detected base-line PET/CT and CT (Patient-ba analysis)	sed
Table (9):	Agreement between baseline PET/CT a CT in detecting metastatic lesion si (Patient-based analysis)	ites
Table (10):	Number of metastatic lesions as detected by base-line PET/CT relative to the detected by CT (lesion-based analysis).	hat
Table (11):	Base-line PET/CT metabolic paramet among the studied cases	
Table (12):	Prognosis among the studied cases	131
Table (13):	Mortality among the studied cases	132

List of Tables Cont...

Table No.	Title Pag	ge No.
Table (14):	Comparison according to molecular subtypes regarding metastatic lesion sites	134
Table (15):	Comparison according to molecular subtypes regarding baseline PET/CT metabolic parameters	135
Table (16):	Comparison according to molecular subtypes regarding prognosis and mortality	138
Table (17):	Comparison according to mortality regarding PET/CT metabolic parameters	139
Table (18):	Diagnostic performance of base-line PET/CT metabolic parameters in predicting mortality	141
Table (19):	Diagnostic characteristics of baseline PET/CT metabolic parameters cut points in predicting mortality	142
Table (20):	Agreement between Suggested baseline PET/CT metabolic parameters and actual mortality	
Table (21):	Comparison between cases ≥ and < median of PET/CT metabolic parameters regarding mortality	
Table (22):	Survival analysis (Cox regression) of PET/CT metabolic parameters in relation to mortality	

List of Figures

Fig. No.	Title Page N	0.
Figure (1):	Anatomy of the breast	4
Figure (2):	The position of the mammary line	
Figure (3):	The intra- and extralobular ducts	
Figure (4):	The ductal system of the breast	
Figure (5):	The blood supply and venous drainage of the	
	breast	9
Figure (6):	Sensory innervations of the breast	10
Figure (7):	Diagram of the principal pathways of	
	lymphatic drainage of the breast	11
Figure (8):	The lymph nodes of the axilla	13
Figure (9):	Illustration of invasive ductal carcinoma vs	
	invasive lobular carcinoma	22
Figure (10):	Example of typical PET/CT scanner	47
Figure (11):	Positron–electron annihilation reaction	49
Figure (12):	Radial blurring	53
Figure (13):	Mean positron range and annihilation angle blurring	54
Figure (14):	The distribution of FDG within a normal	0 -
g	individual (MIP)	60
Figure (15):	Normal PET study	61
Figure (16):	Physiologic muscle activity	
Figure (17):	Brown-Adipose-Tissue Activity as Assessed	
_	by PET–CT with ¹⁸ F-FDG	63
Figure (18):	Bowel uptake. ¹⁸ F-FDG-PET whole-body scan	
	for staging of inflammatory carcinoma of the left	
	breast	
Figure (19):	61-y-old patient with lung cancer	66
Figure (20):	High-density metallic implants generate	
	streaking artifacts and high CT numbers on	C7
	CT image	07

Fig. No.	Title Page N	0.
Figure (21):	Attenuation-corrected axial fused ¹⁸ F-FDG PET/CT image shows a focus of hypermetabolism in the left axilla and Attenuation-uncorrected fused ¹⁸ F-FDG PET/CT images	67
Figure (22):	Curvilinear cold artifact	
Figure (23):	58-y-old man with colon cancer	69
Figure (24):	Local recurrence in a 74-year-old woman who had undergone right modified radical	
	mastectomy eight years previously	
Figure (25):	A 47-y-old female patient with breast cancer	73
Figure (26):	38-year-old woman treated 2 years before with mastectomy, adjuvant chemotherapy, radiation therapy, and breast reconstruction.	74
Figure (27):	A 32-year-old woman with clinical stage IIB breast cancer was upstaged to stage IV after performing PET/CT	76
Figure (28):	Invasive carcinoma of left breast classified as T3N2M0 (stage IIIA) before PET imaging in 62-y-old woman. Classification after PET/CT was T3N3bM1 (stage IV)	
Figure (29):	Invasive ductal carcinoma of right breast initially classified as T4cN0M0. Final classification: T4cN2bM0	78
Figure (30):	Results of PET/CT in a patient suspected of having recurrent breast carcinoma	
Figure (31):	PET/CT fusion image suggestive of recurrence behind the breast prosthesis	83

Fig. No.	Title Page	No.
Figure (32):	Early evaluation of NAC with FDG PET/ C in a 38-year-old woman with invasive duct carcinoma of lower outer quadrant of the lebreast.	al ft
Figure (33):	Measurement of SUV max, MTV, and TLG reference lesions.	
Figure (34):	The frequencies of distant organized involvement by each breast cancer subtype.	
Figure (35):	Planar bone scan versus SPECT	104
Figure (36):	Case of bone metastatic lesions	106
Figure (37):	Multiple ¹⁸ F-FDG-positive osteolytic metastat lesions on baseline PET/CT and post therapy.	
Figure (38):	66 year-old woman with non-small cell lur cancer.	ng
Figure (39):	Comparison between NaF and FDG PET/C in the same 65-y-old woman with metastat breast cancer	ic
Figure (40):	Axial slices at T12 showing ¹⁸ F-NaF PET a baseline (A) and at 8 wk (B) and 12 wk (C) after commencement of endocrine treatment and equivalent ¹⁸ F-FDG slices at baselin (D) and at 8 wk (E) in a 48-y-old woman with metastatic breast cancer.	C) nt ne nn
Figure (41):	Lesion laterality among the studied cases	
Figure (42):	Molecular subtypes among the studied case	
Figure (43):	Risk factors among the studied cases	
Figure (44):	Metastatic lesion sites as detected baseline CT and PET/CT (patient-base	oy ed
	analysis).	126

Fig. No.	Title	Page No.
Figure (45):	Agreement between base-line PET CT in detecting metastatic lesion based analysis)	is (lesion
Figure (46):	Prognosis among the studied cases	
Figure (47):	Mortality among the studied cases	
Figure (48):	Mortality time among the studied c	
Figure (49):	Kaplan Meier curve for survival as studied cases	
Figure (50):	Comparison according to molecular regarding W-SUVmax	
Figure (51):	Comparison according to molecular regarding WB-MTV	
Figure (52):	Comparison according to molecular regarding WB-TLG	
Figure (53):	Comparison according to regarding SUVmax	
Figure (54):	Comparison according to regarding WB-MTV	
Figure (55):	Comparison according to regarding WB-TLG.	_
Figure (56):	ROC curve of baseline PET/CT parameters in predicting mortality.	
Figure (57):	Diagnostic characteristics of PET/CT metabolic parameters cut predicting mortality	points in
Figure (58):	Kaplan Meier curve for survival acc WB-SUVmax median	cording to
Figure (59):	Kaplan Meier curve for survival acc WB-MTV median	
Figure (60):	Kaplan Meier curve for survival acc WB-TLG median	

Fig. No.	Title	Page No.
	G	
Figure (61):	Case 1	148
Figure (62):	Case 2	149
Figure (63):	Case 3	151
Figure (64):	Case 4	153
Figure (65):	Case 5	155
Figure (66):	Case 6	156
Figure (67):	Case 7	157
Figure (68):	Case 8	158

Introduction

Worldwide, Breast cancer is considered the most common cancer type and the most common cause of cancer deaths in women (Shawky et al., 2020).

Breast cancer is a heterogeneous disease, which is classified currently into different subtypes (Piva et al., 2017). Approximately 30% of breast cancer patients are at the risk of developing loco-regional recurrence or distant metastasis (Dong et al., 2015).

Stage IV disease (stage IV at first diagnosis or recurrent from previous breast cancer) showed a 5-year survival rate of approximately 22%, However, this rate varies according to several factors, one of the most important is the hormone receptor status (Pesapane et al., 2020).

The hormone receptor (HR+) positive subtype is the most common subtype and is subdivided into luminal A and luminal B. Human epidermal growth factor receptor 2 (HER2)overexpressing (HR- /HER2+) and triple-negative (HR-/HER2-) subtypes are known to be more aggressive, compared with the luminal A and luminal B, and have poorer outcomes (Dong et al., 2015).

Fusion of Positron emission tomography with the CT provides the ability to combine functional and morphological information into a single study (Borgatti et al., 2017). ¹⁸Ffluorodeoxyglucose (¹⁸F-FDG) PET/CT has been introduced as