

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

Exploitation Blockchain and BIM Technology in Developing Construction Smart Contracts

By

Mohamed Adel Mahmoud Kamel

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

Exploitation Blockchain and BIM Technology in Developing Construction Smart Contracts

By **Mohamed Adel Mahmoud Kamel**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

Under the Supervision of

Prof. Mohamed Mahdy Marzouk

Dr. Emad Shaker Bakhoum

Professor of Construction Engineering and
Management
Structural Engineering Department
Faculty of Engineering, Cairo University

Associate Professor of Construction Engineering and Management Faculty of Engineering and Applied Science, Nile University

Exploitation Blockchain and BIM Technology in Developing Construction Smart Contracts

By **Mohamed Adel Mahmoud Kamel**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in

Structural Engineering

Prof. Mohamed Mahdy Marzouk
Professor of Construction Engineering and Management – Structural Engineering
Department – Cairo University

Prof. Azza Kamel Abouzeid
Professor of Construction Engineering and Management – Structural Engineering
Department – Cairo University

Dr. Hatem Shaker Elbehairy
Associate Professor – Structural Engineering Department – Ain Shams University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2022 **Engineer's Name:** Mohamed Adel Mahmoud Kamel

Date of Birth: 23/02/1994 **Nationality:** Egyptian

E-mail: Mohamed.adel7161@yahoo.com

Phone: 01099539341

Address: B. 13, Ali Ben Abi Taleb St. Haram,

Giza, Egypt

Registration Date: 01/03/2018
Awarding Date:/..../ 2022
Degree: Master of Science
Department: Structural Engineering

Supervisors: Prof. Mohamed Mahdy Marzouk

Dr. Emad Bakhoum

Prof. Mohamed Mahdy Marzouk (Thesis Main Advisor)
Prof. Azza Kamel Abouzeid (Internal examiner)
Dr. Hatem Shaker Elbehairy - Ain Shams University (External Examiner)

Title of Thesis:

Exploitation Blockchain and BIM Technology in Developing Construction Smart Contracts

Key Words:

Cashflow management; Construction Contracts; Blockchain; Smart Contracts; BIM.

Summary:

Poor payment practices are perceived as one of the biggest challenges facing the construction industry. This research proposes a framework that improves the contract management process and enhances construction projects' cashflow. The proposed framework encompasses three main scenarios to explore the benefits of the framework based on the level of framework's adoption in the construction industry. The developed framework has the potential to reduce the problem of poor payment practices, time-barring of some contract clauses, record keeping and paperwork. A case study is presented to illustrate the main features of the proposed framework. The results of the case study reveal that the first scenario could save a portion of banking transactional fees of invoices as they are significantly higher than blockchain transaction fees. Whereas the second scenario shows an enhanced cash flow with less overdraft values due to the secured payments through blockchain. Finally, the third scenario have much less overdraft due to the expedited works approval that leads to shorter cashflow cycle.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute. I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name:	Date:	/	/2022	
Signature:				

Dedication

"To my father who has always guarded our ship."

"To my brother who stayed up to the next morning supporting me with my secondary school History exam."

"To my beloved mother who saved me from the punches of life with her kind slap. We are about to make it. I miss you."

Acknowledgments

IN THE NAME OF ALLAH, THE MOST GRACIOUS AND THE MOST MERCIFUL

I would love to document my deepest gratitude to my supervisors, Prof. Mohamed Mahdy Marzouk and Dr. Emad Shaker Bakhoum for their support throughout the journey. Since registering myself in the pre-master, to helping me focus while serving in the army, and after my dear mother's passing away, they have always been there investing my ups and healing my downs. Without their continuous support, nothing was to be achieved. It was my luck to have them as dear supervisors, professors, and honorably supporters. I would like also to thank Eng. Aliaa Khaled Shahin for her continuous, faithful support with all the technical knowledge and resources she gained after her graduation, I cannot be more grateful. I would like to thank my friends Eng. Mohamed Abd El Maabood, Mr. Abd El Rahman Mahmoud, and Eng. Kareem Sheta for their continuous support. Dr. Ahmed Karam, Engineer Yasser Matar, and Eng. Nahla Hazem, my friends in academia who helped me a lot along the course of my research. Dr. Mohamed Enaba, and Eng. George Ayad who guided me think differently for research ideas. I would like to thank brigadier general Hany Kharboush and Colonel Mohamed Salah for their support in the toughest times and my army friends Eng. Noor Antar, Eng. Mamdouh Mohamed, Eng. Mohamed Gamal, Eng. Ahmed Hawary, Eng. Mahmoud Gaafar, and Eng. Amr Ayman who supported me with their time, efforts, and all their resources. Finally, I would like to thank Miss Fatma Mohamed for her support and continuous motivation.

Table of Contents

DISCL	AIMER	I
DEDIC	CATION	II
ACKN	OWLEDGMENTS	III
TABLE	E OF CONTENTS	IV
LIST C	OF TABLES	VII
	OF FIGURES	
	OF SYMBOLS, ABBREVIATIONS AND NOMENCLATURE	
	RACT	
	ΓER 1 : INTRODUCTION	
1.1.	General	
1.2.	PROBLEM STATEMENT	
1.3.	RESEARCH OBJECTIVE	
1.4.	RESEARCH INVESTIGATION	
1.5.	RESEARCH SCOPE AND LIMITATIONS	
1.6.	RESEARCH METHODOLOGY	
1.7.	THESIS ORGANIZATION	
CHAP	ΓER 2 : LITERATURE REVIEW	6
2.1.	General	6
2.2.	CASHFLOW PROBLEMS AND POOR PAYMENT PRACTICES	
2.3.	PROJECT BANK ACCOUNTS	7
2.4.	SMART CONTRACTS AND CONTRACTS AUTOMATION	8
2.5.	BLOCKCHAIN FOR CONSTRUCTION INDUSTRY	10
2.5.1.	Aspects of blockchains	10
2.5.2.	Use Cases in Different Industries	16
2.5.3.	5	
2.5.4.	11	
2.6.	BUILDING INFORMATION MODELLING	24
2.7.	AUTOMATING PROJECT PAYMENTS	24
2.8.	SUMMARY AND RESEARCH GAP	25
CHAP	TER 3 : CONTRACT AUTOMATION FRAMEWORK	26
3.1.	GENERAL	26
3.2.	FRAMEWORK COMPONENTS	26
3.3.	Framework Adoption	32
3.3.1.	Base-Case Scenario	33
3.3.2.	Cryptocurrency-Based Project Payments Senario	34
3.3.3.	Automated Project Payments Scenario	34
3.3.4.	Smart Construction Contract Scenario	36
3.4.	DATA ACQUISITION MODULE	38

3.4.1.	Data from Tendering Phase	38
3.4.2.	Data from Construction Phase	
3.5.	BIM MODULE	39
3.6.	CLOUD SERVICE MODULE	40
3.7.	SUMMARY	41
CHAP	TER 4: SMART CONTRACTS MODULE	42
4.1.	GENERAL	42
4.2.	CONTRACT CLAUSES' AUTOMATION APPROACH	42
4.3.	DATA COLLECTION	43
4.4.	DEVELOPING SMART CONTRACTS MODULE	44
4.4.1.	Transformation of Contract Clauses	44
4.4.2.	Programming of Contract Clauses	49
4.5.	COMMUNICATION FEATURES	58
4.5.1.	Communication Application	58
4.5.2.	Communications and Record Keeping	60
4.6.	SUMMARY	61
CHAPT	TER 5 : BLOCKCHAIN MODULE	62
5.1.	GENERAL	62
5.2.	CONSTRUCTION INDUSTRY PAYMENT SCHEME	
5.3.	BLOCKCHAIN MODULE DEVELOPMENT	63
5.3.1.	Selection of Suitable Blockchain	63
5.3.2.	Parties' Accounts	67
5.3.3.	Ethereum	68
5.4.	PAYMENTS AUTOMATION	69
5.5.	SUMMARY	74
CHAPT	TER 6: FRAMEWORK IMPLEMENTATION	75
6.1.	GENERAL	75
6.2.	CASE STUDY	75
6.2.1.	Case Description	75
6.2.2.	Case Inputs	75
6.2.3.	5D BIM Modelling	77
6.2.4.	Payments and Associated Transactions	78
6.2.5.	Communication between Project Parties	84
6.2.6.	Real-Time Notifications	85
6.2.7.	Contemporary Records	85
6.3.	RESULTS AND DISCUSSION	86
6.3.1.	No Advance Payment	
6.3.2.	Advance Payment	
6.3.3.	Instant Payments with No Advance Payment	
6.4.	SUMMARY	92
CHAP	TER 7: CONCLUSIONS AND RECOMMENDATIONS	93
7.1.	Conclusions	
7.2	RESEARCH CONTRIBUTION	94

7.3.	RECOMMENDATIONS FOR FUTURE RESEARCH	94
REFER	ENCES	96

List of Tables

Table 2-1: Accessibility-based classification of Blockchain [12]	11
Table 2-2: Control-based blockchain classification [12]	12
Table 3-1: DFD of Receiving Monthly Statements and Certifying	32
Table 3-2: Various Scenarios of The Developed Framework	33
Table 4-1: Communication process for Engineer's decisions	60
Table 5-1: Top 5 Enterprise Blockchains [56]	65
Table 5-2: Blockchain Programming Languages [56]	66
Table 5-3: Python's ranking among other programming languages [57]	67
Table 5-4: SHA-256 Cryptographic Hash Function [60]	69
Table 5-5: Transaction Fees as per the CIB	71
Table 5-6: Resource Usage the Project	72
Table 5-7: Payroll Transaction Cost	72
Table 5-8: Payroll Transaction Cost (Cont.)	72
Table 5-9: Debit Card Fees	73
Table 5-10: Transaction Fees for Supplies	73
Table 6-1: Uses of Case's Inputs to The Framework's Module	76
Table 6-2: The Schedule of invoices and Payments for Scenarios 0 and 1	78
Table 6-3: The Schedule of Payments for Scenario 2	79
Table 6-4: The Schedule of Payments for Scenario 3	80

List of Figures

Figure 1-1: Research Methodology	4
Figure 2-1: Comparison between The Traditional Payment Scheme and PBAs [13]	
Figure 2-2: Forking in Blockchains [28]	
Figure 2-3: Merkle Tree Structure [26]	
Figure 2-4: Bitcoin Merkle Tree [31]	14
Figure 2-5: Merkle Trees in Ethereum [31]	
Figure 2-6: Proof of Work (PoW) Consensus Mechanism [33]	
Figure 2-7: Types of Currencies	
Figure 2-8: Volatility of Bitcoin as An Example of Non-Backed Cryptocurrency [48]	
Figure 2-9: Exchange rate of Ethereum and USDT to EGP	
Figure 3-1: Workflow of The Proposed Framework	
Figure 3-2: The proposed framework for Smart Contract Development	30
Figure 3-3: Data Flow Diagram for the proposed framework	31
Figure 3-4: Project Payment Scheme in Base Case Scenario	
Figure 3-5: Cryptocurrency-Based Project Payment Scheme	
Figure 3-6: Automated Project Payments in Scenario 2	36
Figure 3-7: Smart Construction Contract in Scenario 3	
Figure 3-8: 5D BIM Model Simulation	
Figure 4-1: Overview of the developed smart contracts' approach	43
Figure 4-2: Obligations and workflow in Re-Measured Contracts	45
Figure 4-3: Sequence Diagram for FIDIC Sub-Clause 3.5 Determinations	46
Figure 4-4: Sequence Diagram for FIDIC Sub-Clause 14.7 First Instalment of Advar	nce
Payment	46
Figure 4-5: Sequence Diagram for FIDIC Sub-Clause 14.7 Monthly statements and	
interim payments	47
Figure 4-6: Sequence Diagram for FIDIC Sub-Clause 14.10 Statement at Completion	n47
Figure 4-7: Sequence Diagram for FIDIC Sub-Clause 14.11 Application for Final	
Payment Certificate	
Figure 4-8: Sequence Diagram for FIDIC Sub-Clause 14.11 No Application for Fina	ıl
Payment Certificate	
Figure 4-9: Procedure for FIDIC Sub-Clause 14.7 Advance Payment	
Figure 4-10: Procedure for FIDIC Sub-Clauses 14.3, 14.6, and 14.7 Interim Payment	
	51
Figure 4-11: Procedure for FIDIC Sub-Clause 3.5 Determination	52
Figure 4-12: Procedure for FIDIC Sub-Clause 12 Measurement and Evaluation	
Figure 4-13: Procedure for FIDIC Sub-Clause 14.8 Delayed Payment	
Figure 4-14: Procedure for FIDIC Sub-Clause 10.1 Taking Over of the Works	
Figure 4-15: Procedure for FIDIC Sub-Clause 14.9 Payment of Retention Money	56
Figure 4-16: Procedure for FIDIC Sub-Clause 14.11 Application for Final Payment	
Certificate	
Figure 4-17: Data Flow Diagram for Communication Application	
Figure 5-1: Payment Sequence in the Construction Industry	
Figure 5-2: Workflow of the proposed Blockchain Module	
Figure 5-3: Module's Automated Payments	
Figure 5-4: Traditional Vs. Proposed Payment Scheme	
Figure 6-1: 3D BIM Model of The Project	77

Figure 6-2: The 5D Simulation of The Studied Project	77
Figure 6-3: Employer's Account Information	.82
Figure 6-4: Ganache Interface of the Project's Transactions	82
Figure 6-5: Ethereum Blockchain's Mined Blocks	.83
Figure 6-6: The Payment Transactions between Project Parties	83
Figure 6-7: Logs of The Time-Stamped Transactions	.84
Figure 6-8: Communication between Project Parties	.85
Figure 6-9: Real-Time Notifications of Payments to Subcontractors	.85
Figure 6-10: Coordinates of a Diaphragm Wall Panel from the BIM Model	.86
Figure 6-11: Record Keeping of Claim Events and Notification of a Claim	.86
Figure 6-12: Net Cashflow with no Advance Payment using Cryptocurrency-Based	
Payment Scheme	87
Figure 6-13: Net Cashflow with no Advance Payment with the Automation of	
Accountant Role	.88
Figure 6-14: Net Cashflow with no Advance Payment using Smart Construction	
Contract	.88
Figure 6-15: Net Cashflow with Advance Payment using Cryptocurrency-Based	
Payment Scheme	89
Figure 6-16: Net Cashflow with Advance Payment with the Automation of Accounta	ınt
Role	.90
Figure 6-17: Net Cashflow with Advance Payment using Smart Construction Contraction	ct
	90
Figure 6-18: Real-Time Payments with no Advance Payment	.91

List of symbols, Abbreviations and Nomenclature

API: Application Program Interface

BIM: Building Information Modelling

BTC: Bitcoin

CBC: Construction Blockchain Consortium

DAPP: Distributed Applications

DLT: Distributed Ledger Technology

ETH: Ethereum

FIDIC: International Federation of Consultant Engineers

FinTech: Financial Technology

JCT: Joint Contract Tribunal

NEC: New Engineering Contract

NSW: New South Wales

OBS: Organizational Breakdown Structure

PPC: Project Partnering Contract

SC: Sub-Clause

SHA256: Secure Hash Algorithm 256

URL: Uniform Resource Locator