

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / حسام الدين محمد مغربي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

ملاحظات: لا يوجد

Investigation of the anti-inflammatory effect of Indoles on Ehrlich Ascites carcinoma in murine model

A Thesis submitted for the degree of Ph.D. of Science in Biochemistry

By

Ayah Zaki Mahmoud Adel El Deen Salem

M.Sc. Biochemistry - Faculty of science - Ain Shams University, 2016)

Under the Supervision of

Prof. Dr.

Shadia Abd El Hamid Fathy

Professor of Biochemistry Faculty of Science Ain Shams University

Prof. Dr.

Zakaria Abdel Halim Elkhavat

Research Professor of Medical Biochemistry National Research Centre Prof. Dr.

Mohamed Ragaa Mohamed

Professor of Biochemistry and Molecular Biology Ain Shams University

Dr.

Sherien Mohomed El-Daly

Assistant Research Professor of Medical Biochemistry National Research Centre

Dr.

Dalia Medhat Ahmed Ali

Assistant Research Professor of Medical Biochemistry National Research Centre

2022

Approval sheet

Name of candidate / Ayah Zaki Mahmoud Adel El Deen salem

Title of thesis / Investigation of the anti-inflammatory effect of Indoles on Ehrlich Ascites carcinoma in murine model

This thesis has been approved for submission by

Supervisors

Prof. Dr Shadia Abd El Hamid Fathy

Professor of Biochemistry

Faculty of Science- Ain Shams University

Prof. Dr. Mohamed Ragaa Mohamed

Professor of Biochemistry

Faculty of Ain Shams University

Prof. Dr. Zakaria Abdel Halim Elkhayat

Research Professor of Medical Biochemistry

National Research Centre

Dr. Sherien Mohamed EL-Daly

Assistant Research Professor of Medical Biochemistry

National Research Centre

Dr. Dalia Medhat Ahmed Ali

Assistant Research Professor of Medical Biochemistry- National Research Centre

Examiners committee

Prof. Dr. Yakout Abdel Fattah Yakout El senousy

Professor of Biochemistry

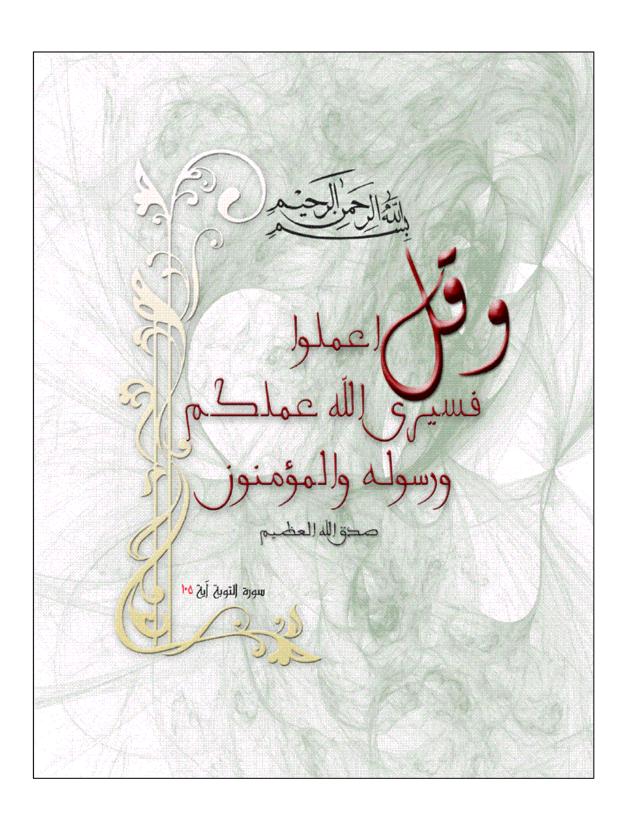
Faculty of vegeterinary- Benha University

Prof. Dr. Hatem Abd El Moneam El Mezayn

Professor of Biochemistry

Faculty of Science-Helwan University

Prof. Dr shadia Abd El Hamid fathy


Professor of Biochemistry

Faculty of Science- Ain Shams University

Prof. Dr. Mohamed Ragaa Mohamed

Professor of Biochemistry

Faculty of Ain Shams University

Declaration

I declare that this thesis represents my own work which has been done after registration for the degree of PhD at Ain Shams University, and has not been previously included in a thesis or submitted to this or any other institution for a degree, diploma or other qualifications.

Ayah Zaki Mahmoud Adel Eldeen Salem

First of all, Thanks first and last to **ALLAH**, to whom I relate any success in my life. Words stand short when they come to express my gratefulness to my supervisors.

I am really grateful to express my gratitude, appreciation and thanks to **Prof. Dr. Shadia Abdel Hamid Fathy**, Prof. of Biochemistry, faculty of Science, Ain Shams University for her relentless support, splendid efforts, advice and her time, attention and guidance needed to let this thesis.

I would like to express my profound gratitude and cordial appreciation to my eminent **Prof. Dr. Mohamed Ragaa Mohamed**, Prof. of Biochemistry and Molecular Biology, Faculty of Science, Ain Shams University, for his moral support, valuable supervision, honest help, encouragement, keep interest and guidance throughout the performance of this work, no words of praise are sufficient.

I am deeply grateful and deep appreciations are due to **Prof. Dr.** Zakaria Abdel Halim El-Khayat, Prof. of Medical biochemistry, Medical biochemistry department, National Research Center, for his supervision, encouragement, providing a lot of facilities, helpful discussions, directions, beneficial advice and continuous support.

My endless thanks to **Dr. Sherien Mohamed El-Daly**, Assi. Prof. of Medical biochemistry, Medical biochemistry department, National research center. She was supportive and taught me a lot. I greatly appreciate her help, supervision and efforts throughout the whole work, although I believe that words cannot express my gratitude

I would like to express my greatest thanks and appreciation to **Dr. Dalia Medhat Ahmed Ali**, Assi. Prof of Medical Biochemistry, Medical biochemistry department, National Research center, for her helpful suggestions, supervision, and continuous support. Her valuable advices helped me in this work.

Dedication

I'd like to dedicate this work to:

My Family

My Husband &

My Sons

Thanking them for their sincere prayers, love, support and encouragement.

Abstract

Nuclear factor- κB (NF- κB) has been identified as the major link between inflammation and cancer. NF- κB controls transcriptional activation of several genes related to inflammation. Natural agents that inhibit this pathway are essential in attenuating inflammation induced by cancer and/or induced by chemotherapeutic drugs. A high intake of Brassicaceae vegetables is linked to a lower incidence of cancer, related to the breakdown of glucosinolates into bioactive indole compounds, suggesting their involvement in modulating essential pathways related to chronic diseases.

In the present study, inoculation of Ehrlich ascites carcinoma (EAC) cells in female albino mice resulted in a marked increase in packed cell volume, viable cell count, and a significant increase in the level of NF-kB, in addition to several cytokines and inflammatory biomarkers (IL-6, IL-1b, TNF-α, and NO). A significant elevation in the inflammatory-medicated miRNAs (miR-31 and miR-21) was also detected. Treatment with 5-Fluorouracil (5-FU) significantly reduces packed cell volume and the viable cell count. However, it was accompanied by a significant increase in the levels of inflammatory markers and the expression of miR-31 and miR-21 compared to the untreated group. Although treatment with the glucosinolates indoles, indole-3-carbinol (I3C) and 3,3-diindolylmethane (DIM) significantly reduce the packed cell volume and the viable cell count, it was still less effective than 5-FU treatment. On the other hand, I3C and DIM significantly reduced the inflammatory response compared to both EAC inoculated untreated group and the EAC group treated with 5-FU. Moreover, their anti-inflammatory effect was modulated by a significant reduction in the inflammatory-medicated miRNAs (miR-31 and miR-21).

Our findings showed that I3C and DIM have a strong antiinflammatory effect, implying that their use as a co-treatment with chemotherapeutic drugs could effectively improve the anti-tumor effect of chemotherapeutics.

Keywords

indole-3-carbinol; 3,3-diindolylmethane; Inflammation; 5-Fluorouracil; Ehrlich ascites carcinoma; miR-21, miR-31, NF-κB

List of Contents

Subject	Page No.
Abstract	
List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Introduction	1
Introduction	1
Aim of the Work	5
Review of literature	6
Materials and Methods	49
Discussion	113
Summary	125
Conclusion	129
Recommendations	
References	131
Arabic Summary	<u> </u>

List of Abbreviations

<u>Abbr.</u> Full-term

DMSO: Dimethyl sulfoxide

AKT : Protein kinase B

Bcl-2: B-cell lymphoma-2

COVID-19: Coronavirus disease 2019

C-Rel : Proto-oncogene C-Rel

CSF : Colony stimulating factor

CV : Cruciferous vegetables

DIM : Diindolylmethane

DNA : Deoxynucleic acid

EAC : Ehrlich ascites carcinoma

EDTA : Ethylene diamine tetra acetic acid

EGFR : Epidermal growth factor receptor

ELISA : enzyme-linked immunosorbent assay

eNOS : Endothelial nitric oxide

ER : Estrogen receptor

FU: 5-fluorouracil

G-CSF : Granulocyte colony stimulating factor

GM-CSF: Granulocyte – macrophage colony stimulating factor

GPCRs : G-Protein-coupled receptors

GST : Glutathione -s- transferase

HGF : Hepatocyte growth factor

I3C : Indole-3-carbinol

IFNS: Interferons

IKBα : Inhibitor of nuclear factor kappa B

IL-1 : Interleukin-1

IL-6 : Interleukin -6IL-8 : Interleukin -8

iNOS: inducible nitric oxide

JAK : Janus kinase

MAP : Mitogen-activated protein

MCP-1 : Monocyte chemoattractant protein-1

MDSC : Myeloid – derived suppressor

miRNA : microRNA

MPO: Myeloperoxidase

MPO : Myeloperoxidase enzymes

NF-kB : Nuclear factor kappa B

NK : Natural killer
NO : Nitric oxide

NRC : National research CentrePBS : Phosphate buffer salinePEITC : Phenethyl isothiocyanate

r.p.m : Round per minute RNA : ribonucleic acid

ROMs : Reactive oxygen metabolites

ROS : Reactive oxygen species

SD : Standard deviation

SFN : Sulforaphane

SOD : Superoxide dismutase

STAT : Signal transducer and activator of transcription

TGF-β : Transforming growth factor-βTNF-α : Tumor necrosis factor alpha

VEGF : Vascular endothelial growth factor

VEGF : Vascular endothelial growth factor

List of Tables

Table No.	. Title	Page '	No.
Table (1):	Change in body weight, packed volume and cell growth inhibition i different studied groups	n the	83
Table (2):	Serum analysis of liver and ki biomarkers (ALT, AST, Creati urea) in the different study groups	inine,	86
Table (3):	Serum inflammatory biomarkers Nitrite in different studied groups		89
Table (4):	Serum inflammatory biomarkers TNF-α (pg/ml) in different str groups.	udied	93
Table (5):	Serum inflammatory biomarkers of κB (pg/ml) in different studied groups		97
Table (6):	Serum inflammatory biomarkers of (pg/ml) in different studied groups		. 101
Table (7):	Serum inflammatory biomarkers o 1b (pg/ml) in different studied group		. 105

List of Figures

Figure No	e. Title	Page No.
Figure (1):	Interleukin-6 expressed in an auto and paracrine manner from both c cells and cells in the surrounding microenvironment	cancer tumor
Figure (2):	NF-kB activation, and the interabetween inflammatory and malicells, can promote malignant conversand progression	gnant ersion
Figure (3):	The physiological role of nitric such as regulating activity of important cells, metastic spread to organs sulung and liver.	mune ch as
Figure (4):	The concentration of nitric determines its role in tumorigenesi	
Figure (5):	%change in body weight in diffestudied groups	
Figure (6):	Packed cell volume "ml" in different studied groups	
Figure (7):	Viable cell count (10^6 cells/m different studied groups	
Figure (8):	Cell growth inhibition in diffstudied groups	ferent
Figure (9):	Serum analysis of liver bioma (ALT, AST) in the different groups.	study

Figure (10):	Serum analysis of kidney biomarkers (creatinine) in the different study groups
Figure (11):	Serum analysis of kidney biomarkers (urea) in the different study groups
Figure (12):	Serum inflammatory biomarkers about Nitrite in different studied groups92
Figure (13):	Serum inflammatory biomarkers TNF-α (pg/ml) in different studied groups96
Figure (14):	Serum inflammatory biomarkers NF- κB (pg/ml) in different studied groups 100
Figure (15):	Serum inflammatory biomarkers IL-6 (pg/ml) in different studied groups 104
Figure (16):	Serum inflammatory biomarkers IL-1b (pg/ml) in different studied groups 108

Introduction

Particularly with the steady rise in life expectancy, increasing urbanization and the subsequent changes in environmental conditions, including lifestyle. Cancer risk can be reduced by eliminating the identified carcinogens – or at least minizine exposure to them. It has been estimated that more than two – thirds of human cancers could be prevented through appropriate lifestyle modification (*Bray et al., 2018*).

Chronic inflammation is implicated in the development and progression of different types of cancer. A variety of soluble factors and cellular signaling events play a crucial role in inflammation (*David*, *2021*). The most important signaling pathway involved in the initiation and amplification of inflammatory responses is the one that leads to nuclear factorκB (NF-κB) activation (*Liu et al.*, *2017*).

Since NF-κB regulates several genes that are activated in response to inflammation, it may play a vital role in the inflammatory response to infection and tissue injury. The transcription factors in the NF-κB family control the expression of genes that code for cytokines (like interleukin - 6 and interleukin-1b), pro-inflammatory enzymes (ex; inducible nitric oxide synthase, iNOs), and microRNAs that control tumor progression. Accordingly, developing