

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / حسام الدين محمد مغربي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

ملاحظات: لا يوجد

A Comparison between Propofol, Dexmeditomedine and Nitroglycerin as Hypotensive Agents and their Effect on Blood Loss in Functional Endoscopic Sinus Surgery (FESS)

Thesis

Submitted for Partial Fulfillment of M.D Degree in Anaesthesia

By

Sarah Abd el razzak Mohammed Saleh

 $MB\ BCh$

Master Degree of Anesthesia

Under supervision of

Prof. Dr. Hala Gomaa Salama

Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Prof. Dr. Adel Mikhail Fahmy Shonoda

Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Dr. Doaa Mohammed Kamal El Din

Lecturer of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Dr. Mohamed Sayed El Shorbagy

Lecturer of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2022

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Hala Gomaa Salama**, Professor of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Or. Adel Mikhail Fahmy Shonoda**, Professor of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Doaa Mohammed Xamal & Din,** Lecturer of Anesthesia, Intensive Care and

Pain Management, Faculty of Medicine, Ain Shams University,

for her great help, active participation and guidance.

I wish to introduce my deep respect and thanks to **Dr.**Mohamed Sayed El Shorbagy, Lecturer of Anesthesia,
Intensive Care and Pain Management, Faculty of Medicine, Ain
Shams University, for his kindness, supervision and cooperation
in this work.

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Introduction	1
Aim of the Work	3
Review of Literature	
Hypotensive Anesthesia	4
Pharmacology of Related Drugs	14
Patients and Methods	43
Results	49
Discussion	65
Summary	76
Conclusion	79
Recommendations	80
References	81
Arabic Summary	

List of Abbreviations

Abb. Fo	ull term
μg Microgran	n
ACE Angiotens	in converting enzyme
ANH Acute Nor	movolemic Hemodilution
ASA American	Society of Anesthesiologists
BBB Blood-bra	in barrier
bpm Beat per n	ninute
CHFCongestive	e heart failure
CO ₂ Carbon die	oxide
CYP 2A6Cytochrom	ne P-450
ECG Electrocar	diography
EEG Electroend	cephalogram
FDA Food and I	Drug Administration
FESS Functiona	l endoscopic sinus surgery
GA General ar	nesthesia
GABAγ-aminobu	tyric acid
GTN Glyceryl tr	rinitrate
GTPGuanosine	triphosphate
HR Heart rate	e
hr Hour	
ICPIntracrani	al pressure
ICU Intensive	care unit
IV Intravenor	us
IVRAIntravenou	ıs regional anesthesia
MAP Mean arte	rial pressure
NONitric oxid	e
NTG Nitroglyce	rin

List of Abbreviations Cont...

Abb.	Full term
PACU	. Postanesthesia care unit
	. Pharmacodynamic
PK	. Pharmacokinetic
PONV	. Postoperative nausea and vomiting
PRIS	. Propofol infusion syndrome
SNP	. Sodium nitroprusside
α2-AR	α2-adrenergic receptor

List of Tables

Table No.	Title	Page No.
Table (1):	Pharmacological differences clonidine and dexmeditomedine	
Table (2):	Comparison of dexmedetomidine v ICU sedatives	
Table (3):	Comparison between the three gregards age, gender, weight and AS	-
Table (4):	Comparison between the three groups as regards MAP	
Table (5):	Comparison between the three gregards heart rate	_
Table (6):	Comparison between the three gregards bleeding score	_
Table (7):	Comparison between the three gregards duration of surgery in minu	_
Table (8):	Comparison between the three gregards time needed to achieve hypo	-
Table (9):	Comparison between the three gregards occurrence of side effects	-

List of Figures

Fig. N	lo.	Title	Page No.
Figure	(1):	Dexmedetomidine vial	14
Figure	(2):	Chemical structure of dexmedetomic	line15
Figure	(3):	Physiology of various α2-ad receptors	_
Figure	(4):	Comparison between the three grregards age	
Figure	(5):	Comparison between the three grregards gender	
Figure	(6):	Comparison between the three grregards weight	
Figure	(7):	Comparison between the three gr regards ASA score	
Figure	(8):	Comparison between the three gr	_
Figure	(9):	Comparison between the three gr	
Figure	(10):	Comparison between the three gr regards bleeding score	
Figure	(11):	Comparison between the three gr regards duration of surgery in minut	_
Figure	(12):	Comparison between the three gr regards time needed to achieve hypo	-
Figure	(13):	Comparison between the three gr regards occurrence of side effects	oups as

ABSTRACT

Background: Functional endoscopic sinus surgery (FESS) has been proposed as selected treatment used in patients with chronic sinusitis that have not responded to medical therapy. Due to the nature location of endoscopic sinus surgery; even a small amount of bleeding can reduce the operative visibility. The aim of the work was to compare between propofol, Dexmeditomedin and nitroglycerin as regards their effects as hypotensive agents and their effects on blood loss in FESS

Patients and methods: Sixty adult patients of ASA physical status I and II, admitted to Ain Shams University hospital, scheduled for FESS and were randomly assigned into three groups, (**D group**) for dexmedetomidine (n=20), (**P group**) for propofol (n=20) and (**N group**) for nitroglycerine (n=20). **In Group** (**D**) patients received dexmeditomedin loading dose of 1 mcg/kg over 10 (on 100ml normal saline) before induction followed by a maintenance infusion of 0.5mcg/kg/hr. **In Group** (**P**) patients received propofol infusion 8mg/Kg/hr IV. **In group** (**N**): patients received nitroglycerin infusion 2μg/kg/min. MAP and HR were measured continuously and recorded every 15 minutes, bleeding score for assessment of intraoperative surgical field and duration of surgery was measured.

Results: Targeted mean arterial pressure (MAP) of (55-65 mmHg) and improved surgical field quality were achieved in group D and group P. Also dexmeditomedine was faster in achieving target blood pressure than propofol heart rate (HR) was significantly lower in the D group. Duration of surgery was shorter in group D and group P.

Conclusion: Dexmedetomidine and propofol are more effective in achieving controlled hypotention than nitroglycerine. Both drugs were associated with less bleeding and shorter duration of surgery in patients undergoing FESS. Dexmeditomedine was more effective in controlling heart rate than propofol and nitroglycerine. Also dexmeditomedine was faster in achieving target blood pressure than propofol.

Keywords: Propofol, Dexmedetomidine, Nitroglycerine, Controlled hypotension, Sinusitis.

Introduction

Functional endoscopic sinus surgery (FESS) is becoming a widely performed operation. FESS is indicated for the surgical management of acute and chronic sinus pathologies when conservative management has failed. Objective of functional endoscopic sinus surgery (FESS) is to restore drainage and aeration of Paranasal sinuses and seeks to preserve the normal anatomical structures and function (Cho et al., 2012).

With the advantage of enhanced illumination and visualization, it has dramatically improved surgical dissection. Impaired visibility due to excessive bleeding is a major hurdle that has been reported for FESS under general anesthesia (GA) (Sieskiewicz et al., 2014).

Major complications have been reported for FESS under general anesthesia resulting from impaired visibility due to excessive bleeding (Yoo et al., 2010).

There are several important advantages of using the intentional hypotensive anesthetic technique during the FESS like reduction in blood loss, hence, reduction in blood transfusion rate, improvement in the surgical field, and reduction of the duration of surgery (Elsharnouby and Elsharnouby, 2006).

In hypotensive anesthesia, the patient's baseline mean arterial pressure (MAP) is reduced by 30% or MAP is kept at 60-70 mm Hg. Consequently, the systolic blood pressure values are about 80–90 mm Hg (*Guney et al.*, 2012).

Several pharmaceuticals have been used successfully to produce controlled hypotension during general anesthesia, for propofol, dexmeditomedine nitroglycerine example: and (Gerlach and Dasta, 2007).

Dexmedetomidine is highly selective, specific, and potent α_2 -adrenergic agonist having analgesic, sedative, antihypertensive, and anesthetic sparing effects when used in the systemic route. Prior administration of dexmedetomidine can also provide a hypotensive anesthesia, a better surgical field, and finally an abbreviated operative duration (Nasreen et al., 2009).

Propofol is one of the most common drugs used in general anesthesia, which reduces systemic blood pressure by dilating blood vessels. In the maintenance of anesthesia, propofol infusion reduces pressure by 20%–30% compared to before that (Reves and Glass, 2010).

Organic nitrate esters have a direct relaxant effect on vascular smooth muscles (Srivastava et al., 2013).

AIM OF THE WORK

This study aims to compare the effect of propofol, Dexmeditomedine and Nitroglycerin as hypontensive agents in FESS and their effect on decreasing blood loss during surgery.

Chapter 1

HYPOTENSIVE ANESTHESIA

Blood pressure is one of the essential vital signs that are monitored by health care professionals in modern medicine. In general, a normal blood pressure is an indicator of preserved cardiac output and good organ perfusion, and management of the patient often focuses on maintaining a normal blood pressure. Therefore, maintaining a patient's stable blood pressure within normal limits during surgery (normotensive anesthesia) is one of the indices of skillful anesthesia, and normotensive anesthesia is usually considered to be the gold standard for anesthesia (*Tobias*, 2002).

The strategy of lowering the patient's blood pressure or controlled hypotension during anesthesia (hypotensive anesthesia) has been practiced for decades. The physiological principle which underlies hypotensive anesthesia is a natural survival mechanism. When profuse bleeding occurs, the blood pressure drops. This drop leads to a reduction or cessation of the bleeding, blood pressure stabilization, and recovery. Accordingly, reducing the patient's blood pressure during surgery can potentially reduce overall bleeding (*Hassan et al.*, *2011*).

The indications for hypotensive anesthesia are the surgical site, the course and extent of the surgery, and the patient's general condition. Hypotensive anesthesia is

considered to be a suitable anesthetic technique for those patients who will be undergoing spinal surgery, hip or knee arthroplasty, craniosynostosis, hepatic resections, robotic surgery, and major maxillofacial operations. However, the use of hypotensive anesthesia is associated with the risk of reduced perfusion to important organs and tissues, mainly the brain, heart, and kidneys. Thus, the hypotensive technique is potentially unsafe in some patients and is not suitable for all (*Banerjee et al., 2013*).

In hypotensive anesthesia, the patient's baseline mean arterial pressure (MAP) is reduced by 30%. Consequently, the systolic blood pressure values are about 80–90 mm Hg and the MAP is reduced to 50–65 mm Hg (*Degoute*, 2007).

A prospective randomized clinical trial in which patients, who underwent orthognathic surgery, were randomly allocated to undergo these surgeries under normotensive or hypotensive anesthesia. They reported that the extent of intraoperative blood loss in those operations that were done under hypotensive anesthesia was substantially less than that in those operations that were done under normotensive anesthesia (*Piñeiro-Aguilar et al.*, 2011).

Since intraoperative blood loss is reduced under hypotensive anesthesia, the need for allogeneic blood transfusion and its risks, namely, postoperative infection, acute lung injury, postoperative cardiac failure, tumor recurrence, perioperative myocardial infarction, and increased mortality, is also reduced (*Ashworth et al.*, 2010).

Evaluation of the surgical field conditions is subjective and difficult to measure because the appraisal relies solely on the surgeon's assessment of the conditions. The duration of the surgery may be used as an objective indicator for surgical field conditions because the duration of an operation which is conducted under poor surgical field conditions may be longer than the one which is conducted under good surgical field conditions. The results of trials whose aim was to study the difference in surgical field conditions in major maxillofacial operations in hypotensive and normotensive anesthesia found that the surgical field conditions are better under hypotensive anesthesia than those under normotensive anesthesia (*Carlos et al.*, 2014).

Protocols for Hypotensive Anesthesia

Through the years, a multitude of drug combinations and protocols for hypotensive anesthesia have been suggested and compared. The two main strategies for achieving hypotensive anesthesia are (a) deep anesthesia and heavy analgesia and (b) standard anesthesia and administration of hypotensive drugs. By deepening the anesthetic plane and using high doses of analgesics, such as opioids, the recovery time may be prolonged. On the other hand, administering a hypotensive agent to a patient who is anesthetized using a standard