

بسم الله الرهكن الرّحيم

$\infty \infty \infty$

تم رفع هذه الرسالة بواسطة /صفاء محمود عبد الشافي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لايوجد

Faculty of Science Department of Zoology

Putative Role of Fibroblast Growth Factor 23 in Diagnosis of Chronic Kidney Diseases in Human

Submitted in Partial Fulfillment for the Degree of Master of Science in Zoology

By Radwa Mohamed Ibrahem B.Sc.2009

Supervisors

Dr. Wael M. El-Sayed

Professor of Physiology
Department of Zoology
Faculty of Science – Ain Shams University

Dr.Osama Mahmoud Ahmed

Professor of Internal Medicine Faculty of Medicine – Ain Shams University

Dr. Eman Saleh El-Hadidi

Professor of Clinical and Chemical Pathology Faculty of Medicine – Ain Shams University

I would like to express my cordial gratitude, indebtedness, and sincere thanks to **Prof. Dr. Wael M. El-Sayed,** Prof. of Physiology, for direct supervision of the practical work, valuable advice regarding theoretical information in different fields related to this research and providing me with important literature, valuable criticism and kind encouragement.

Very special thanks are also to **Prof. Dr. Osama Mahmoud Ahmed,** Professor of Internal Medicine,
Department of Nephrology-Faculty of Medicine-Ain Shams
University, for his generous help and cooperation.

Very special thanks are due to **Prof.Dr. Eman** Saleh El-Hadidi, late Professor of Clinical and Chemical Pathology Faculty of Medicine-Ain Shams University, for generous help, wise co-operation, indispensable advice, and fruitful directions that had rendered many difficulties easily surmountable.

Thanks are also extended to head and all staff members of Zoology department, Faculty of Science, Ain Shams University, for continuous encouragement throughout this work.

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Abstract	••••••
1. Introduction	1
Aim of the Work	3
2. Review of Literature	4
3. Subjects and Methods	26
4. Results	43
5. Discussion	63
6. Summary	74
7. Conclusion	78
References	79
الملخص العربي	
المستخلص العربي	

List of Abbreviations

Abbr.		Full-term
ALT AST BCP BUN CKD-EPI	:	Alanine aminotransferase Aspartate aminotransferase Bromocresol purple Blood urea nitrogen Chronic kidney disease epidemiology collaboration
CK CKD CRF	:	Creatine kinase Chronic kidney disease Chronic renal failure
CRP EDTA eGFR	::	C-Reactive protein Ethylene diamine tetra acetic acid. Estimated glomerular filtration rate
Egr-1 FGF23 FGF-Rs	: :	Early growth response factor 1 Fibroblast growth factor 23 Fibroblast growth factor receptors
G6PDH GPO GSH GSSG	:	Glucose-6-phosphate dehydrogenase Glycero phosphate oxidase Reduced Glutathione Oxidized Glutathione
HCC HCV HDL-Chol.	:	Hepatocellular carcinoma Hepatitis C Virus High Density Lipoprotein Cholesterol
HIV HK HMG-CoA	:	Human immunodeficiency virus hexokinase 3-hydroxy 3-methyl glutaryl CoA
HOMA-IR HPO I/IGF1 IBD	:	Homeostasis model assessment Horseradish peroxidase Insulin/insulin-like growth factor Inflammatory bowel disease
		5

IDDM : Insulin dependent diabetes mellitus
 IDF : International diabetes federation
 IDL : Intermediate density lipoprotein

IL : Interleukine

IR : Insulin resistance

IRS-1 : Insulin receptor substrate-1

LCAT : Lecithin-cholesterol acyltransferase

LDH : Lactate dehydrogenase

LDL-Chol. : Low Density Lipoprotein Cholesterol

MDH : Malate dehydrogenase

MDRD : Modification of diet in renal disease
 NAD : Nicotinamide Adenine Dinucleotide
 NIDDM : Non-insulin dependent diabetes mellitus

NIH : National institutes of health

NK cells : Natural killer cells

NPT2 : Sodium-phosphate cotransporter 2

PTH : Parathyroid hormone QS : Quantitation standard

RAAS : Renin-angiotensin-aldosterone

ROS : Reactive oxygen species
SH : Sulfhydryl (thiol) group

SHPT : Secondary hyperparathyroidism

SREBP : Sterol regulatory element-binding protein

T-cells : T-lymphocytesT-chol. : Total cholesterol

TG : Triglyceride or triacylglyceride
 TNF-α : Tumor necrosis factor- alpha
 VLDL : Very-low-density lipoprotein

List of Tables

Table	No. Title	Page No.
(2.1):	Stages of Chronic kidney Disease	7
(4.1):	Effect of chronic kidney disease (Ck glomerular filtration rate (GFR) (ml and glucose (mg/dL)	L/min)
(4.2):	Effect of chronic kidney disease (Ck kidney functions in human	*
(4.3):	Effect of chronic kidney disease (Ck serum calcium and phosphorus levels	
(4.4):	Effect of chronic kidney disease (Ck liver functions.	
(4.5):	Effect of chronic kidney disease (Ck serum activities of creatine kinase (U/mL) and lactate dehydrogenase (U/L).	(CK) (LDH)
(4.6):	Effect of chronic kidney disease (Ck serum level of parathyroid hormone (pg/mL) and testosterone (ng/mL)	(PTH)
(4.7):	Effect of chronic kidney disease (Ck C- reactive protein (CRP) (mg/c serum level of tumor necrosis factor (TNF-a) (pg/mL) and fibroblast g factor-23 (FGF-23) (pg/mL).	lL) & alpha growth

List of Figures

Figure ${}^{\bigcirc}$	No. Title	Page No.
(2.1):	Simplified scheme of the developme secondary Hyperparathyroidism	
(3.1):	standard curve for human free testos (pg/mL)	
(3.2):	Standard curve of tumor necrosis (TNF)-α	
(3.3):	Standard curve of FGF-23	41
(4.1):	Effect of chronic kidney disease (CK) glomerular filtration rate (GFR) (mL/m	*
(4.2):	Effect of chronic kidney disease (CK serum level of glucose (mg/dL)	*
(4.3):	Effect of chronic kidney disease (CK serum level of creatinine (mg/dL)	
(4.4):	Effect of chronic kidney disease (CK) serum level of blood urea nitrogen (mg/dL)	BUN)
(4.5):	Effect of chronic kidney disease (CK serum level of albumin (g/dL)	·
(4.6):	Effect of chronic kidney disease (CK serum level of calcium (mg/dL)	
(4.7):	Effect of chronic kidney disease (CK serum level of phosphorus (mg/dL)	,
(4.8):	Effect of chronic kidney disease (CK) serum activity of alanine aminotrans (ALT) (U/L)	sferase

(4.9):	Effect of chronic kidney disease (CKD) on serum activity of aspartate aminotransferase (AST) (U/L)	53
(4.10):	Effect of chronic kidney disease (CKD) on serum ALT/AST ratio	54
(4.11):	Effect of chronic kidney disease (CKD) on serum activity of creatinine kinase (CK) (U/mL)	56
(4.12):	Effect of chronic kidney disease (CKD) on serum activity of lactate dehydrogenase (LDH) (U/L)	56
(4.13):	Effect of chronic kidney disease (CKD) on serum level of parathyroid hormone PTH (pg/mL)	58
(4.14):	Effect of chronic kidney disease (CKD) on serum level of testosterone (pg/mL)	59
(4.15):	Effect of chronic kidney disease (CKD) on serum level of Creactive protein (CRP) (mg/dL)	61
(4.16):	Effect of chronic kidney disease (CKD) on serum level of tumor necrosis factor alpha (TNF-a) (pg/mL)	62
(4.17):	Effect of chronic kidney disease (CKD) on serum level of fibroblast growth factor-23 (FGF-23) (pg/mL)	62

Abstract

Putative role of fibroblast growth factor 23 in diagnosis of chronic kidney diseases in human

Radwaa Mohamed Ibrahem

M.Sc., Faculty of Science, Ain Shams University

Keywords: Calcitropic hormones, CKD, FGF23, Inflammation, PTH

The present study aimed to evaluate the clinical utility of serum FGF23 as an early specific biomarker in the diagnosis and progression of chronic kidney disease (CKD) patients. A number of 120 male patients with CKD who were classified according to the estimated glomerular filtration rate (eGFR) into four stages (n=30 for each stage), in addition to 30 healthy control men were included. Patients in stage 2 of CKD did not show any significant difference in serum levels of urea and creatinine, and lactate dehydrogenase (LDH) activity. With the progression of CKD from stage 3 to stage 5, there were linear increases in the serum urea and creatinine levels, and LDH activity. There was a significant decrease in serum albumin and significant elevation in creatine kinase in all CKD stages. There was a significant decrease in serum

Ca²⁺ level in stages 2-4. Only patients in CKD stage 5 showed a significant elevation in serum phosphorus level. There were significant elevations in serum aminotransferases (ALT and AST), C-reactive protein, and parathyroid hormone levels in stages 4 and 5. Serum testosterone level was significantly reduced in stages 3 and 4 as compared to control. With the progression of CKD stages from stage 2 to 5, there were linear significant elevations in serum tumor necrosis factor- α (TNF- α) and FGF23 levels. To conclude, FGF23 was the most sensitive indicator in the early diagnosis and staging of CKD. Other biomarkers were elevated only in the late stages of CKD, in addition to their low specificity. Therefore, FGF23 could be used in the diagnosis and prognosis of CKD patients.

Introduction

The incidence of chronic kidney disease (CKD) is reaching an epidemic proportion worldwide. The number of patients with earlier stages of CKD exceeds those reaching end-stage renal disease by more than 50-folds (**El-Nahas and Bello**, 2005). Recent professional guidelines classify the severity of CKD into five stages starting with stage 1, being the mildest and usually causing few symptoms, to stage 5, being a severe illness with poor life-expectancy if untreated (**National Kidney Foundation**, 2002).

Early identification of CKD and timely detection of progression are truly global challenges facing the nephrology community, especially since a number of promising primary and secondary interventions to accelerate progression are available (El-Nahas and Bello, 2005). In humans, fibroblast growth factor 23 (FGF23) is a protein encoded by the FGF23 gene (Yamashita *et al.*, 2005). FGF23 is a member of the fibroblast growth factor (FGF) family which is responsible for phosphate metabolism (Fukumoto, 2008). The main function of FGF23 seems to be regulation of phosphate concentration in plasma. FGF23 is secreted by osteocytes in response to elevated calcitriol. FGF23 acts on the kidneys, where it decreases the expression of a sodium-phosphate cotransporter (NPT2) in the proximal tubule (Jüppner,

2011). Thus, FGF23 decreases the reabsorption and increases excretion of phosphate

This study has been conducted on adult patients with chronic kidney disease (CKD) stages 2-5 and apparently healthy subjects serving as a control group, all of whom willingly participated in the study. They were classified according to modification of diet in renal disease (MDRD) equation for estimating glomerular filtration rate (eGFR) (National Kidney Foundation, 2002).

Aim of the Work

To evaluate the clinical utility of serum FGF23 as a novel non-invasive and reliable independent marker of diagnosis and progression of renal disease in patients of non-diabetic CKD.