

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / حسام الدين محمد مغربي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

ملاحظات: لا يوجد

The efficiency of nanoparticles conjugated with the snake venom against the hepatocellular carcinoma cell line HEPG2.

Thesis Submitted to Faculty of Science, Ain Shams University, In Partial Fulfillment of Master Degree of Science (M.Sc.)

By Kholoud Ahmed Ramadan EL-Sayed Ismaeil

(B.Sc.)

Zoology Department, Faculty of Science, Ain Shams University

Under the Supervision of

Prof.Dr.Hamdy Hamed Swelim

Professor of Cell Biology and Histology Zoology Department Faculty of Science Ain Shams University

Prof.Dr.Ali Mohamed AliAbd El-Aal

Professor of Physiology, Zoology Department, Faculty of Science Ain Shams University

Prof. Dr. Salwa EL-Hallouty

Professor of Biochemistry Pharmacognosy Department, National Research Center

First Paper Published from the Thesis

Egypt J. Esp. Bot (Zool.), 17(1): 79 – 93 (2021) DOI: 10.5455/egypebix 20211011015351 O The Egyptian Society of Experimental Biology AARU Impact Factor: 1.21

RESEARCH ARTICLE

Kholoud A. Ramadan Hamdy H. Swellm All Abd El-Aal Salwa M.M. EL-Hallouty

The efficiency of crude viper venom Cerastes cerastes-conjugated chitosan nanoparticles against the hepatocellular carcinoma cell line HEPG2

ABSTRACT:

Snake venoms (SnVs) are mixture of numerous proteins and peptides, and several studies have demonstrated the therapeutic values of some bloactive compounds extracted from SnVs on various cancer cell compounds lines, as well as in some models in vivo as cytotoxic, anti-tumour and apoptosis-inducing agents. In the current study, we evaluated the anticancer potential of crude Cerastes cerastes snake venom conjugated with chitosan nanoparticles (CSNPs) hepatocellular carcinoma cell line (HEPG2) at different concentrations for 24-hrs incubation through performing MTT assay and using Transmission Electron Microscope (TEM) for investigations. Also, some measurements Investigations. Also, were carried out on CSNPs to examine their stability, surface charge and detect the appropriate size for using as drug carrier through zetasizer instrument which gave some fundamental Information about Nanoparticles (NPs); as average zetapotential, average size, and polydispersity index (PDI), also NPs were examined morphologically by using TEM. The cells were incubated for 24-hrs with venom-conjugated NPs for MTT cell viability and results revealed significant cytotoxic potency of venom-conjugated NPs.
The determined ICs of venom-conjugated NPs was 0.709 µg/ml and ultrastructural investigations of HEPG2 cells breated with venom-conjugated NPs at three different doses 1/2 IC_{sc}, IC_{sc} and 2IC_{sc} for 24-hrs showed some degrees of necrosis and various cellular alterations. The venom-conjugated NPs proved high potency against HEPG2 cells after 24-hrs treatment and in a dose-dependent manner. On the contrary, there had been non-significant cytotoxic effect of free low molecular weight CSNPs (LMWT-CSNPs) on HEPG2 cells.

KEY WORDS:

Snake venoms, Cerastes Cerastes, HEPG2, Chitosan, Nanoparticles, Anticancer.

CORRESPONDENCE:

kholoud Ahmed Ramadan

Zoology Department, Faculty of Science, Ain Shams University

E-mall: kholoud.ramzy1991@gmall.com

Hamdy Hamed Swellm*

All Abd El-Asi*

Salwa M.M. EL-Hallouty**

- * Zoology Department, Faculty of Science, Ain Shams University
- ** Pharmacognosy Department, National Research Centre Egypt

ACCEPTED: Oct 11, 2021

ARTICLE CODE: 07.01.21

INTRODUCTION:

Cancer is a multi-genic and multicellular disease; unfortunately, it can arise from all kinds of cells and organs with multifactorial etiology (Baskar et al., 2012). Certainly, the development of cancer occurs through multi-step carcinogenesis process depending on many survival mechanisms to progress as self-sufficiency in growth signalling, unresponsive to inhibitory growth signalling, avoidance of apoptosis, endiess proliferative potential, sustained anglogenesis, tumour invasion and metastasis (Hanahan and Weinberg, 2011). The hepatocellular carcinoma (HCC) is the third leading cause of cancer related death

Acknowledgement

Foremost, I want to offer this endeavor to our GOD ALMIGHTY for the wisdom he bestowed upon me, the strength, peace of my mind and good health in order to finish this research. This thesis became a reality with the kind support and help of many persons. So; I would like to extend my sincere thanks to all of them. It is a genuine pleasure to express my deep sense of thanks and gratitude to Prof. Dr. Hamdy Hamed Swelim, Professor of Cell Biology and Histology, Zoology Department, Faculty of Science, Ain Shams University for his continuous encouragement, critical reading, right vision and fruitful notes, intense interest and patience to complete this thesis. Indeed, his sincere guidance helped me in every step in this research. Actually, he has a heart of father.

I would like to extend my gratitude to the late **Prof.Dr.Ali**Mohamed Ali Abd EL-Aal, Professor of Physiology, Zoology

Department, Faculty of Science, Ain Shams University for his advanced proposal of the thesis, continuous encouragement and generous supply with the materials for research. I am praying to God to mercy and forgive him.

I owe a deep sense of gratitude and it is my privilege to thank

Prof. Dr. Salwa Mohamed Mahmoud EL-Hallouty, Professor of

Biochemistry, Pharmacognosy Department, National Research Center, for her great effort and support during laboratory work.

I would like to offer many thanks and appreciations to Academy of Scientific Research and Technology for its financial support to produce this research. My thanks and appreciations also go to my colleagues who motivated and encouraged me during my journey to finish this thesis. A special gratitude from my deep heart going to Dr. Asmaa Ali, lecturer of invertebrate, Zoology Department, Faculty of Science, Ain Shams University, Alaa Elmeligey, Assistant lecturer of Cell Biology and Histology, Zoology Department, Faculty of Science, Ain Shams University, Nouran Ahmed Elbialy, Research and development, Nano-Tech Egypt for photo-Electronics Company, and Ebthal hassan Mohammed, Research assistant, E.M. Unit, Research Park, Faculty of Agriculture, Cairo university. I received from them sincere support and very important technical help to accomplish this work.

Finally, I take this opportunity to express my greatest regards to my small family my mother, my brother, my sister and my uncle for their deep love, kindness and encouragement in the hard moments. Besides, my father who I wish was alive to share with me that moment, God rest him.

CONTENTS

	Page
List of Abbreviations.	xii-xii-
xii	
List of Figures	xii-xii
Abstract	1-2
1. Introduction	3-7
Aim of the Work	8
2. Review of Literature	9-37
A.Hallmarks of cancer	9
A.1. The Hepatocellular Carcinoma (HCC)	9-10
A.2. Chmotherapy and chemo-resistance Phenomenon	10-11
B. Natural products and cancer therapy	11-13.
C.Snake venoms (SnVs)	14
a.The SnVs composition and their biological activity against various	
diseases	14
b.Anti-tumoral studies of <i>C. cerastes</i> venom and other snake venoms	15
1.b.Crude venom studies	15-17
2.b.Isolated fractions studies	17-20
1.2. b.Metalloproteinase	21-23
2.2. b.L-amino acid oxidase	23-24
3.2. b.Disintegrin	24
1) Salmosin	24-25
2) Contortrostatin	25
4.2. b.Phospholipase A ₂	25-26
5.2.b.C-type lectin	26-27
D. An overview on nanotechnology in medical field	27-28
D.1. Drug delivery systems for cancer therapy	28-30
D.2.The cellular uptake of NPs	30-31
D.3. Passive targeting, enhanced permeability and retention (EPR)	
and active targeting	31-33
E.Chitosan (CS)	34
E.1.Definition	34
E.2.General Properties of CS	34-35
E.3. Therapeutic studies of chitosan nanparicels (CSNPs) and	
their uses in drug delivery approach	35-36
E.4.Ionotropic gelation method	36-37
	•• ••
3. Materials and Methods.	38-52
Materials	38-39
Methods	39
-Gorups	39
-Cell culture	40
-Cell count	40-41
-Preparation of CSNPs	41-42
-Conjugation of Cerastes cerastes venom with chitosan	

m	1:-4	- 4	^-	4-	4-
\mathbf{Q}	LIST	OT	LΟ	nte	nts

nanoparticles (CSNPs)	42-43
-Characterization of CSNPs, crude Cerastes cerastes venom and venom-	
conjugated NPs	43-45
-MTT assay	45-48
-Morphological study	48-49
-Preparation for Transmission Electron Microscopy	49-51
- Determination of encapsulation efficiency and loading capacity of venom	
- conjugated NPs (FB)	51-52
4. Results	53-142
-MTT assay	53-59
-U-V analysis and determination of the surface charge (potential) of	
C.cerastes crude venom	60-62
-Effect of concentration of CSNPs, crude venom and CS:TPP ratio on	
potential, size and polydispersity index (PDI) of particles	63-67
-Characterization of free LMWt-CSNPs and venom-conjugated NPs	68-75
-Morhological study	76-90
-Electron Microscopy	91-141
-Evaluation of encapsulation efficiency EE% and loading capacity LC	
of venom-conjugated NPs (FB)	142
5. Discussion	143-167
6. Summary	168-172
7. References	
مستخلص	2-1
ملخص عربي	6-3
	0-3

LIST OF ABBREVIATIONS

AnVs	Animal Venoms
Bcl-2	B-Cell Lymphoma 2
BmK-CREB	Buthus martensi Karsch- cAMP Response Element Binding protein
BAX	BCL2-associated X protein
CCs	Cancerous Cells
CTX-111	Cardiotoxin-111
CC	Cerastes cerastes
CCV	Cerastes cerastes Venom
C.C-PLA ₂ -1	Cerastes cerastes Phospolipase A2-1
C.C-PLA ₂ -2	Cerastes cerastes Phospolipase A2-2
C.c.gasperetti	Cerastes cerastes gasperetti
C.vipera	Cerastes vipera
CSNPs	Chitosan Nanoparticles
CS	Chitosan
CrTX	Crototoxin
CP-LAAO	Cryptelytrops purpureomaculatus l-Amino Acid Oxidase
CTL	C-Type Lectin
DDSs	Drug Delivery Systems
DD	Degree of Deacetylation
D.r.russelii	Daboia russelii russelii
DIS	Disintegrins
EAC	Ehrlich Ascites Carcinoma

EPR	Enhanced Permeability and Retention
ECM	Extracellular Matrix
FDA	Food and Drug Administration
FADD	Fas-Associated protein with Death Domain
FA	Formula A
FB	Formula B
HCC	Hepatocellular Carcinoma
IL-6	Interleukin 6
IL-1β	Interleukin 1 beta
KDa	kilo Dalton
LMWt-CSNPs	low Molecular Weight Chitosan Nanoparticels
MMP	Matrix Metalloproteinase
MDR	Multi Drug Resistance
NPs	Nanoparticles
N.n.atra	Naja naja atra
N.n.oxiana	Naja naja oxiane
NF-kB	Nuclear Factor Kappa light chain enhancer of activated B cells
NDDSs	Novel Drug Delivery Systems
NDs	Novel Drugs
OH-LAAO	Ophiophagus Hannah L-Amin Acid Oxidase
PLA_2	Phospholipase A ₂
p50	Protein 50 (Transcription factor)
p53	Protein 53(Tumor suppressor)
p65	Protein 65(Transcription factor)
PTEN	Phosphatase and Tensin homolog

RGD	Tripeptide Arg-Gly- Asp
STAT3	Signal Transducer and Activator of Transcription 3
SnVs	Snake Venoms
SnV	Snake Venom
SnV-MMP	Snake Venom MatrixMetalloProteinase
SnV-LAAO	Snake Venom L-AminoAcid Oxidase
SRNCs	Stimuli-Responsive Nanocarriers
SPs	Serine Proteases
TRAIL	Tumor necrosis factor-Related Apoptosis-Inducing ligand
TPP	Tri-PolyPhosphate
VnS	Venomus Species
V. l. turnica	Vipera lebtina turnica

LIST OF FIGURES

NO	Figure	Page
1	Applications of venom proteins as potential anticancer agents.	21
2	Accumulation of nanoparticles in tumor tissues via the EPR effect.	32
3	Passive and Active drug targeting approaches.	33
4	Chemical structure of chitin and chitosan.	34
5	Cytotoxicity of free crude <i>C.cerastes</i> venom against HEPG2 cells.	54
6	Cytotoxicity of <i>C.cerastes</i> venom-conjugated NPs (FB) against HEPG2 cells.	56
7	Cytotoxicity of free LMWt-CSNPs against HEPG2 cells.	58
8	Ultraviolet-visible spectrophotometry analysis of crude <i>C.cerastes</i> venom.	61
9	The average zeta-potential distribution of <i>C.cerastes</i> venom.	61
10	The average zeta-potential distribution (a) and the average size- distribution (b) of venom-conjugated NPs (FA).	64
11	The average zeta-potential distribution (a) and the average size- distribution (b) of venom-conjugated NPs (FB).	66
12	Transmission electron micrographs of free LMWt-CSNPs.	69
13	Transmission electron micrographs of <i>C.cerastes</i> venom-conjugated NPs (FB).	71
14	The average zeta-potential distribution (a) and the average size-distribution of free LMWt-CSNPs (b).	74
15	Photomicrograph illustrates the morphological characterization of control HEPG2 cells cultured for 24 hrs.	78
16	Photomicrographs illustrate the morphological characterization of HEPG2 cells after treatment with $1/2$ IC ₅₀ dose of <i>C. cerastes</i> venom for 1, 3, 6 and 24hrs.	80
17	Photomicrographs illustrate the morphological characterization of HEPG2 cells after treatment with IC ₅₀ dose of <i>C.cerastes</i> venom for 1, 3, 6 and 24 hrs.	82
18	Photomicrographs illustrate the morphological characterization of HEPG2 cells after treatment with 2IC ₅₀ dose of <i>C.cerastes</i> venom for 1, 3, 6 and 24 hrs.	84
19(A&B)	(A) Photomicrographs illustrate the morphological characterization of HEPG2 cells after treatment with 1/2 IC ₅₀ (a), IC ₅₀ (b) and 2IC ₅₀ (c) doses of <i>C.cerastes</i> venom-conjugated NPs for 6 hrs.	87
	(B) Photomicrographs illustrate the morphological characterization of HEPG2 cells after treatment with 1/2 IC ₅₀ (a), IC ₅₀ (b) and 2IC ₅₀ (c) doses of <i>C.cerastes</i> venom-conjugated NPs for 24 hrs .	89

20-21	Electron micrographs of ultrathin sections of control HEPG2 cells after 24 hrs.	92
22	Electron micrograph of ultrathin section of HEPG2 cells treated with $1/2\ IC_{50}$ of crude venom after 1 hr.	95
23	Electron micrograph of ultrathin section of HEPG2 cells treated with $1/2IC_{50}$ of the crude venom after 3hrs.	98
24-25	Electron micrographs of ultrathin sections of HEPG2 cells treated with $1/2~IC_{50}$ of the crude venom after 6hrs.	101
26-27	Electron micrographs of ultrathin sections of HEPG2 cells treated with 1/2 IC $_{50}$ of the crude venom after 24hrs.	104
28	Electron micrograph of ultrathin section of HEPG2 cells treated with IC $_{50}$ of the crude venom after 1hr.	107
29	Electron micrograph of ultrathin section of HEPG2 cells treated with IC $_{50}$ of the crude venom after 3hrs.	110
30-31-32	Electron micrographs of ultrathin sections of HEPG2 cells treated with IC_{50} of the crude venom after 6hrs.	113,115
33-34	Electron micrographs of ultrathin sections of HEPG2 cells treated with IC_{50} of the crude venom after 24hrs.	118
35	Electron micrograph of ultrathin section of HEPG2 cells treated with $2IC_{50}$ of the crude venom after 1hr.	121
36-37	Electron micrographs of ultrathin sections of HEPG2 cells treated with $2IC_{50}$ of crude venom after 6hrs.	124
38-39-40	Electron micrographs of ultrathin sections of HEPG2 cells treated with $2IC_{50}$ of crude venom after 24hrs.	127,129
41-42	Electron micrographs of ultrathin sections of HEPG2 cells treated with $1/2~\rm IC_{50}$ of the crude venom-conjugated NPs after 24 hrs.	132
43-44-45	Electron micrographs of ultrathin sections of of HEPG2 cells treated with IC50 of the crude venom-conjugated NPs after 24hrs.	135,137
46-47	Electron micrographs of ultrathin sections of HEPG2 cells treated with 2IC ₅₀ of the crude de venom -conjugated NPs after 24hrs.	140

ABSTRACT

Snake venoms (SnVs) are mixture of numerous proteins and peptides, and several studies have demonstrated the therapeutic values of some bioactive compounds extracted from SnVs on various cancer cell lines as well as in some models in vivo; as cytotoxic, anti-tumor and apoptosis-inducing agents. In the current study, we evaluated the anticancer potential of crude *Cerastes* cerastes (C.cerastes) snake venom (SnV) alone and when conjugated with low molecular weight chitosan nanoparticels (LMWt-CSNPs) on hepatocellular carcinoma cell line HEPG2 at different concentrations and time intervals through performing MTT assay. Also, we used inverted light microscope morphological studies, Transmission Electron Microscope (TEM) for ultrastructural investigations. Also, some measurements were carried out on chitosan nanoparticles (CSNPs) to examine their stability, surface charge and detect the appropriate size for using as a drug carrier through zetasizer instrument. We got some fundamental information about nanparticles (NPs); such as average zetapotential, average size, and polydispersity index (PDI). Nanoparticles were also examined morhologically by using TEM.Spectrophotometer analysis was carried out on SnV for qualitative and quantitative measurements. Also, it was necessary to determine the surface charge of *C.cerastes* venom by zetasizer

before conjugation process with chitosan. The cytotoxicity of HEPG2 cells treated with free crude venom and venomconjugated NPs of formula B (FB) was measured by MTT assay. The MTT results revealed significant cytotoxic potency of both of them, wherase there wasn't significant cytotoxic potencyof free LMWt-CSNPs.Besides,the determined IC₅₀ values of venom and venom-conjugated NPs were highly promising. The IC_{50} was 3.67 µg / ml for *C.cerastes* venom and 0.709 µg / ml for venom-conjugated NPs.So, the cytotoxicity of cells treated with venom-conjugated NPs appeared to be more potency than those treated with venom alone.Morphological studies ultrastructural investigations of HEPG2 cells treated with free venom and venom-conjugated NPs at three different doses 1/2 IC₅₀, IC₅₀ and 2IC₅₀ for 1, 3, 6 and 24 hrs time intervals showed various forms of cytotoxic effect of venom on HEPG2 cells. They were in the form of: decrease in the number of filopodia, blebbing and rupture of plasma membrane, lytic necrosis, coagulative necrosis, swelling of mitochondria with cristolysis, appearance of apoptotic bodies, pyknosis, karyorrhexis and karyolysis. The data of zetapotential, size, and PDI of CSNPs and venom-conjugated NPs showed reasonable values, reflecting the stability and uniformaity of NPs.Besides, surface charge of C.cerastes venom was in negative value. The results of spectrophotometer analysis of