

بسم الله الرهكن الرّحيم

$\infty \infty \infty$

تم رفع هذه الرسالة بواسطة /صفاء محمود عبد الشافي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لايوجد

ESTABLISHMENT OF DNA BARCODE FOR THE IDENTIFICATION OF SOME ENDEMIC PLANT SPECIES

By

SHAIMAA AHMED ALI ABDELHADY

B.Sc.Agric. Sci. (Genetics), Fac. of Agric, Ain Shams University, 2008 M.Sc.Agric.Sci.(Genetics), Fac. of Agric, Ain Shams University, 2014

A Thesis Submitted in Partial Fulfillment Of The Requirement for the Degree of

in
Agricultural Sciences
(Genetics)

Department of Genetics Faculty of Agriculture Ain Shams University

Approval Sheet

ESTABLISHMENT OF DNA BARCODE FOR THE IDENTIFICATION OF SOME ENDEMIC PLANT SPECIES

By

SHAIMAA AHMED ALI ABDELHADY

B.Sc.Agric. Sci. (Genetics), Fac. of Agric, Ain Shams University, 2008 M.Sc.Agric.Sci.(Genetics), Fac. of Agric, Ain Shams University, 2014

This thesis for Ph.D. degree has been approved by:
Dr. Houssam El-Din Fathy El-Wakeel Prof. Emeritus of Agriculture Botany, Faculty of Agriculture, (Saba Basha) Alexandria University.
Dr. Alia Ahmed El-Seoudy Prof. Emeritus of Genetics, Faculty of Agriculture, Ain Shams University.
Dr. Khaled Abdelaziz Soliman

Date of Examination: 12 / 12 / 2021

University.

ESTABLISHMENT OF DNA BARCODE FOR THE IDENTIFICATION OF SOME ENDEMIC PLANT SPECIES

By

SHAIMAA AHMED ALI ABDELHADY

B.Sc.Agric. Sci. (Genetics), Fac. of Agric, Ain Shams University, 2008 M.Sc.Agric.Sci.(Genetics), Fac. of Agric, Ain Shams University, 2014

Under the supervision of:

Dr. Aly Z.E. Abdelsalam

Prof. Emeritus of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University (Late)

Dr. Khaled Abdelaziz Soliman

Prof. Emeritus of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University.

ABSTRACT

Shaimaa Ahmed Ali Abdelhady: Establishment of DNA Barcode for The Identification of Some Endemic Plant Species. Unpublished PhD. Thesis, Department of Genetics, Faculty of Agriculture, Ain Shams University, 2021.

Global warming, which is caused by anthropogenic activity, is a major threat to biodiversity in arid and semi-arid areas. Egypt is expected to undergo acute rainfall decrease and temperature boost in the next few decades, leading to geographical allocation of many plant species. Endemic plants of pleiotropic economic importance are strongly affected in the context of climate change prospects which gradually will result in losing our genetic resources plant wealth. Few studies were carried on the Egyptian Brassicaceae family which has economical and medicinal importance because of the presence of many active compounds that are included, in the pharmaceutical and cosmetic components like glucosinolates that play an important role against several pests like weeds, insects, and nematodes. In addition, it contains a large amount of antioxidant which inhibit the growth of microbes and can be used to treat rheumatic diseases. The identification of such family still kind depend and mostly rely on the morphological characters. To globally sustain the genetic pattern of this Egyptian plant family wealth, it was essential to characterize them basing on their authenticated genetic background. Here we present a phylogenetic analysis of 16 species of Egyptian Brassicaceae family using two plastid coding genes; Ribulose-1,5- bisphosphate carboxylase oxygenase (rbcL-a) and maturase K (matK). The maximum likelihood method of the two markers for our samples was concordant with the Brassicaceae's references-sequences, which exist on plastid are considered highly conserved biomarkers. In this study, we have generated a robust phylogeny tree based on molecular level that validates the Egyptian plant species and reliably differentiate them not only depending on the morphological identification. This study is considered the first phase of Egyptian Brassicaceae family species authentication to be followed by biochemical studies serving the pharmacological and medicinal fields. DNA barcode is an effective technique in identifying species.

Keywords: *rbcL-a*; *matK*; DNA Barcoding and phylogenetic analysis.

ACKNOWLEDGEMENT

I wish to express my deep gratitude and sincere appreciation to **Prof. Dr. Aly Z.E. Abdelsalam**, Professor of Genetics, Genetics Dept., Faculty of Agriculture, Ain Shams University for continuous supervision, kind encouragement, precious advices during the progress of thesis work. After helping to initiate this study, Dr. Abdelsalam passed away in March of 2020.

Gratefulness and thanks are not enough to express my deep gratitude, and sincere appreciation to **Prof. Dr. Khaled Abdelaziz Soliman**, Professor of Genetics, Genetics Dept., Faculty of Agriculture, Ain Shams University for his continuous supervision, tremendous help, kind encouragement, sincere guide criticism, facilities offered and valuable guid while writing and revising this thesis.

Great appreciation is also expressed to **Dr. Asmaa M. Abushady**, Associate Prof. of Genetics, Fac. of Agric. Ain Shams Univ. for her continuous supervision, kind encouragement, sincere help and criticism, precious advices and for revising this thesis during this study.

Great appreciation is also expressed to **Dr. Abdoallah A. Sharaf,** Associate Prof. of Genetics, Fac. of Agric. Ain Shams Univ. for his continuous supervision, sincere help and criticism, precious guiding in data analyses.

I would also like to express my deepest thanks and everlasting gratitude to **Prof. Abd El-Halim Abd El-Mogali Mohamed** for his valuable help for sample authentication according to morphological characters.

Finally, I am indebted to my family for their great help and patience during this work, especially **mother**, **father** for continuous encouragement and praying for me.

CONTENTS

Title	Page	
LIST OF TABLES	IV	
LIST OF FIGURES	VI	
LIST OF ABBREVIATIONS	VIII	
INTRODUCTION	1	
REVIEW OF LITERATURE	4	
1. Endemism	4	
1.1. Taxa of Endemic Plants	5	
1.2. Geographical distribution of Endemic Plants	6	
2. Plant Species of Brassicaceae (Cruciferae) family	6	
2.1. Brassica sp	12	
2.2. Cakile maritima Scop	13	
2.3. Coronopus didymus	14	
2.4. Diplotaxis harra	15	
2.5. Eruca sativa	16	
2.6. Raphanus sp	16	
2.7. Sinapis alba	17	
2.8. Eruca sativa	17	
2.9. Erucaria sp	19	
2.10. Farsetia aegyptia Turra	19	
2.11. Lobularia sp	20	
2.12. Sisymbrium irio	20	
2.13. Zilla spinosa	21	
2.14. Matthiola sp	22	
3. DNA Barcode	22	
3.1. DNA Barcode Importance	23	
3.2. Advantages of DNA	24	
3.3. DNA Barcode Applications	26	
4 The Chloroplast Genes for Brassicaceae Plants	27	

MATERIALS AND METHODS	30
1. Plant material	30
1.1. Collection and preparation of plant materials	30
1.2. DNA Extraction	32
1.2.1. Materials for DNA extraction	32
1.3. Polymerase chain reaction (PCR) conditions	32
1.4. The amplification of universal primers rbcL and matK	33
regions	
1.5. Agarose Gel electrophoresis	33
1.5.1. Materials of Agarose gel electrophoresis	33
1.5.1.1.TAE buffer (50x)	33
1.5.1.2. Gel preparation	34
1.6. PCR Clean-Up and Gel Extraction	34
1.7. Quantification of Amplicon using Nanodrop apparatus	34
1.8. DNA Sequencing for Purified Amplicon	35
2. PCR and phylogenetic analysis	35
2.1. DNA extraction	35
2.2. Polymerase chain reaction (PCR) conditions	36
2.3. Gel electrophoresis	37
2.4. PCR Clean-Up and Gel Extraction	37
2.5. DNA Sequencing for Purified Amplicon	39
2.6. Phylogenetic analyses	39
RESULTS AND DISCUSSION	41
1. Morphological identification	41
1.1. Sisymbrium L.	42
1.2. Zilla forssk	42
1.3. Frsetia L.	43
1.4. Diplotaxix L.	43
1.5. Brassica L.	43
1.6. Matthiola R.	44
1.7. Coronopus Zinin.	45
1.8. Raphanus L.	45

1.9. Eruca Mill.	46
1.10. Lobularia Disc.	46
1.11. Cakile Mill	46
1.12. Sinapis L.	47
1.13. Erucaria Gaerth.	47
2. PCR amplification and sequencing of chloroplast (<i>rbcL-a</i> and	55
matK) genes	
3. Nucleotide diversity	58
4. Sequence divergences within Brassicaceae species	63
5. Phylogenetic analysis	63
SUMMARY	69
REFERENCES	72
APPENDIX TABLE	97
ARABIC ABSTRACT	