

بسم الله الرهكن الرجيم

$\infty \infty \infty$

تم رفع هذه الرسالة بواسطة /صفاء محمود عبد الشافي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لايوجد

Evaluation of Endothelial Cell Density after Torsional Phaco-emulsification in Patients with Pseudo-exfoliation

Thesis

Submitted for Partial Fulfillment of the Requirement of Master Degree in Ophthalmology

By

Ali Mohamed Ali Abd El Rahman

(M.B.B.CH) Ain Shams University

Supervisors

Prof. Dr. Ayman Abd El Moneim El Said Gaafar

Professor of Ophthalmology Faculty of Medicine, Ain Shams University

Dr. Mohamed Omar Youssef

Assistant Professor of Ophthalmology Faculty of Medicine, Ain Shams University

Dr. Bassem Fayez Aziz

Lecturer of Ophthalmology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2022

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I would like to express my sincere gratitude and deep appreciation to Prof. Dr. Ayman Abd El Moneim Al Said Gaafar, Professor of Ophthalmology Faculty of Medicine Ain Shams University, for his continuous scientific guidance. Words cannot adequately express my great thanks and gratitude to his.

I am delighted to express my deep gratitude and sincere thanks to Dr. Mohamed Omar Youssef, Assistant Professor of Ophthalmology Faculty of Medicine Ain Shams University, for his great help, endless support and kind supervision throughout the period of work.

Aziz, Lecturer of Ophthalmology Faculty of Medicine Ain Shams University, for his continuous interest, helpful cooperation and effective advice throughout the entire work. He guided me patiently, provided me generously with his valuable experience, which kept me on the right way.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Ali Mohamed Ali Abd El Rahman

Contents

Title	Page No.
List of abbreviations	i
List of tables	ii
List of figures	iii
Introduction	1
Aim of the work	3
Review of literature	4
Patients and methods	35
Results	40
Case presentation	55
Discussion	58
Summary and conclusion	67
Recommendations	69
References	70
Arabic summary	

List of Abbreviations

Abb.	Full term
ALIC	Area under curve
	Average cell size
CD	-
	Cumulative dissipated Energy
CV	Coefficient of variation of cell area
DL	Dua's layer
DM	Descemet's membrane
ECC	Endothelial cell count
ECD	Endothelial cell density
FMS	Flow measurement system
IOP	Intra ocular pressure
LOXL1	lysyl oxidase-like 1 gene
Max	Maximum cell area
MIN	Minimum cell area
NPV	Negative predictive value
NSE	Neuron- specific enolase
OVD	Ocular viscoelastic device
POAG	Primary open angle glaucoma
PPV	Positive predictive value
PXS	pseudo-exfoliation syndrome
ROC	Receiver operating characteristic curve
SD	Standard deviation
SNPs	Single nucleotide polymorphisms

List of Tables

Table No	. Title	Page No.
Table 1:	Demographic data of the studied cases	40
Table 2:	Comparison between 2 groups regarding management history	
Table 3:	Comparison between 2 groups regarding BC	CVA44
Table 4:	Comparison between 2 groups regardin lamp examination	_
Table 5:	Comparison between 2 groups regarding F examination and Biometry	
Table 6:	Comparison between 2 groups regardendothelial cell count by specular microscop	_
Table 7:	Parameters of ROC curve of endothelia count pre and post operatively	
Table 8:	Correlation between Endothelial cell count post (4 weeks) regarding Age, BCVA Biometry	and
Table 9:	Correlation between endothelial cell coun operative and the studied parameters	-
Table 10:	Correlation between endothelial cell count operative (4weeks) and the studied parameters	-

List of Figures

Fig. No.	Title	Page No.
Figure 1:	Structure of the cornea	4
Figure 2:	Schematic representation of the strucomposition of the cornea and limbus.	
Figure 3:	Arrangements of collagen fibers in the	e stroma8
Figure 4:	Dua's layer (DL)	9
Figure 5:	Appearance of young endothelium a magnification. Cells are hexagonal ar size and appearance	nd equal in
Figure 6:	Microvilli projecting from the apical the corneal endothelium	
Figure 7:	Low and high magnification of the endothelial surface showing the cilia from beneath the cell surface	protruding
Figure 8:	The corneal endothelium serves a barrier between the corneal stroma and anterior chamber (posterior)	(anterior)
Figure 9:	Changes in corneal endothelial cell d size with age.	-
Figure 10:	Optical design of the noncontact microscopy	
Figure 11:	Example of corneal endothelial cells c specular microscopy	
Figure 12:	Corneal guttata associated with dystrophy	
Figure 13:	Corneal edema	21
Figure 14:	Ghost vessels in the Cornea	21
Figure 15:	Cornea with polymegathism and pleor	norphism23

List of Figures cont...

Fig. No.	Title	Page No.
Figure 16:	Various abnormal endothelial cell	_
Figure 17:	Gonio photograph showing increas pigmentation in PXS	
Figure 18:	PXS material in angle	26
Figure 19:	Classic pattern of PXS seen in the lens.	29
Figure 20:	Fibrillar PXS material seen in pupillary	border31
Figure 21:	PXS material on corneal endothelium	32
Figure 22:	Comparison between 2 groups regarding	age41
Figure 23:	Comparison between 2 groups regarding	sex41
Figure 24:	Comparison between 2 groups remedical history	
Figure 25:	Comparison between 2 groups regarding disease	
Figure 26:	Comparison between 2 groups regarding	BCVA 44
Figure 27:	Comparison between 2 groups regard lamp examination	
Figure 28:	Comparison between 2 groups regarding examination	
Figure 29:	Comparison between 2 groups re Biometry	
Figure 30:	Comparison between 2 groups re Endothelial cell count by specular micro	
Figure 31:	Comparison between 2 groups regarendothelial cell loss	0
Figure 32:	ROC curve of pre-operative and post-o Endothelial cell count as a predictor of p	

List of Figures cont...

Fig. No.	Title	Page No.
Figure 33:	Comparison between Endothelial c 4weeks post-operative regarding Age, I Biometry	BCVA and
Figure 34:	Correlation between Endothelial cell of operative regarding Age, BCVA and Bi	
Figure 35:	Pre-operative specular microscopy	55
Figure 36:	4 weeks post-operative specular micros	scopy57

Introduction

The corneal endothelium is a single layer of hexagonal cells that do not have the ability to regenerate. The normal density of corneal endothelial cells in adults is approximately 2500 cells/mm² and it is reduced by about 0.6% a year. The endothelium performs an essential function of maintaining the hydration of the cornea. When the endothelial cells density is reduced to approximately 800cells/mm², it may lead to corneal decompensation causing corneal edema and loss of corneal transparency which disrupts vision. (1)

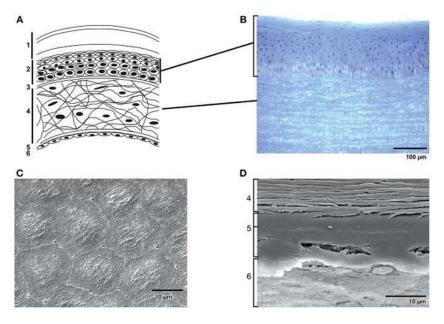
The pseudo-exfoliation syndrome (PXS) is a systemic agerelated disorder with a strong genetic component. PXS conferred by three single nucleotide polymorphisms (SNPs) in the lysyl oxidase-like 1 (LOXL1) gene. It is characterized by the production and accumulation of extracellular granular amyloidlike material in many tissues and organs. (2)

A typical sign of PXS syndrome visible during an examination with the slit lamp bio microscope is white deposits accumulating on the pupillary border and on the anterior lens capsule. (3)

Deposits of the pseudo-exfoliative material can also be found on the inner layer of the ciliary epithelium, the zonules of Zinn, the iris epithelium, in the anterior chamber angle structures and in the front part of the vitreous. (4)

Deposits of the PXS material can also take the form of irregular clumps on the corneal endothelium. These changes are closely related with cataract, glaucoma, lens subluxation, pseudouveitis, retinal vein occlusion, and keratopathy. (5)

Aim of the Work


The aim of this study is to compare pre-operative corneal thickness between normal subjects and subjects with pseudo-exfoliation and to determine the effects of phaco-emulsification surgery on corneal endothelial cell density in cataract patients with pseudo-exfoliation syndrome.

Review of Literature

Anatomy of the Cornea

The cornea is the transparent avascular anterior coat of the eyeball which allows light transmission. Its function is to provide a proper refractive surface together with the overlying tear film (Total refractive power of the cornea is about 43D, 70% of that of the eye). Also, it helps to protect the contents of the globe from infection and structural damage. (6)

The human cornea consists of five layers: The multilayered epithelium with its basement membrane, Bowman's layer, substantia propria, Dua's layer, Descemet's membrane and the endothelium (figure 1).

Figure 1: Structure of the cornea. ⁽⁶⁾