

EXPERIMENTAL AND NUMERICAL STUDY ON THE FRACTURE OF HYBRID COMPOSITE MATERIALS

BY

BASSEM SAMEER MOSTAFA ABDEL RAHMAN

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

Mechanical Design and Production Engineering

EXPERIMENTAL AND NUMERICAL STUDY ON THE FRACTURE OF HYBRID COMPOSITE MATERIALS

BY Bassem Sameer Mostafa Abdel Rahman

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

in

Mechanical Design and Production Engineering

Under the Supervision of

Prof. Dr. Abdel Halim El Habbak

Assoc. Prof. Dr. Mahmoud Adly

Professor of Mechanical Engineering Mechanical Design and Production Faculty of Engineering, Cairo University Assoc. Professor of Mechanical Engineering Mechanical Design and Production Faculty of Engineering, Cairo University

EXPERIMENTAL AND NUMERICAL STUDY ON THE FRACTURE OF HYBRID COMPOSITE MATERIALS

BY Bassem Sameer Mostafa Abdel Rahman

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in

Mechanical Design and Production Engineering

Approved by the
Examining Committee

Prof. Dr. Abdel Halim El Habbak, Thesis Main Advisor

Assoc. Prof. Dr. Mahmoud Rahman Adly, Thesis Advisor

Prof. Dr. Mahmoud Gharib El Sherbiny, Internal Examiner

Prof. Dr. Mostafa Hassan Youssef Shazly, External Examiner

Professor of Solid Mechanics, The British University in Egypt

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020 Engineer's Name: Bassem Sameer Mostafa

Date of Birth: 12/05/1991 Nationality: Egyptian

E-mail: engbassem007@gmail.com

Phone: 012 2005 3009

Address: 5217 St. 9, Mokattam, Cairo

Registration Date: 01/10/2014 Awarding Date: // 2020

Degree: Master of Science

Department: Mechanical Design and Production Engineering

Supervisors:

Prof. Abdel Halim Mohamed Abdel Halim El Habbak

Assoc. Prof. Mahmoud Abdel Rahman Adly

Examiners: Prof. Mostafa Youssef Hassan Shazly (External examiner)

Professor of Solid Mechanics, The British University in Egypt
Prof. Mahmoud El Sherbiny (Internal examiner)
Prof. Abdel Halim El Habbak (Thesis main advisor)

Assoc. Prof. Mahmoud Adly (Advisor)

Title of Thesis:

Experimental and Numerical Study on the Fracture of Hybrid Composite Materials

Key Words:

Tensile; Bending; Double Cantilever Beam; Glass Fiber Reinforced Polymer.

Summary:

Fiber Metal Laminates (FMLs) are hybrid composite materials that consist of metallic layers bonded together with composite fibers. The current research investigates the behavior of a woven glass fiber reinforced polyester aluminium based (Glare) fiber metal laminate subjected to three types of loadings. The tests are: tensile test, bending test, and double cantilever beam test (DCB). The results of the three tests were compared with monolithic woven glass fiber reinforced polyester (GFRP) laminate subjected to the same types of loads. The effect of the replacement of cross-ply (0/90°) glass fiber reinforced epoxy laminas with woven glass fiber reinforced polyester laminas in GLARE was also investigated.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Bassem Sameer Mostafa Abdel Rahman Date: //2020

Signature:

Dedication

This thesis is dedicated with love and affection to my parents.

Acknowledgments

I thank all who in one way or another contributed in the completion of this thesis. First, I give thanks to God for protection and ability to do work.

I would first like to thank my thesis advisors Prof. Abdel Halim El Habbak and Prof Mahmoud Adly of the Faculty of Engineering at Cairo University. The doors to their offices were always open whenever I ran into a trouble spot or had a question about my research or writing. They consistently allowed this research to be my own work, but steered me in the right direction whenever they thought I needed it.

I would also like to acknowledge Prof. Mostafa Shazly of the Faculty of Engineering at British University, and Prof. Mahmoud El Sherbiny of the Faculty of Engineering at Cairo University as the examiners of this thesis, and I am gratefully indebted to them for their valuable comments on this thesis.

I am also so thankful to my fellow students Mahmoud Ayyad, Muhammed Mostafa, Ahmed Nabil, Ahmed Fathy, Ahmed Abdel Fattah, Ahmed Sami, and Ayman Osama whose challenges and productive critics, have provided new ideas to the work. I also thank in particular Mohamed Abdel Hamid, Islam Hamza, and Mohamed Wagih without them I would have achieved my master's degree two years ago. My appreciation also extends to Dr. Salwa Kamal Abdel Hafiz and all the secretary team of graduate studies affairs, the way they continuously facilitate the procedures and help me and my colleagues, has always been giving us the idea to give up the whole research work.

Finally, I also thank my family who encouraged me and prayed for me throughout the time of my research. This thesis is heartily dedicated to my father who took the lead to heaven before the completion of this work. Most importantly, I wish to thank my loving and supportive soul mate, Sarah, who enlightened my life with hope and motivation and continuously provided unending inspiration.

May the Almighty God richly bless all of you.

Table of Contents

DISCLAIMER	I
ACKNOWLEDGMENTS	III
TABLE OF CONTENTS	IV
NOMENCLATURE AND LIST OF ABBREVIATIONS	VI
Nomenclature	VI
ABBREVIATION	
LIST OF TABLES	VII
LIST OF FIGURES	
ABSTRACT	XI
CHAPTER 1 : INTRODUCTION	1
1.1. Overview	1
1.2. CLASSIFICATION OF FIBER METAL LAMINATES	
1.3. NUMERICAL SIMULATION	
1.4. MECHANICS OF FIBER COMPOSITES	7
1.4.1. Ply Relative Content	
1.4.2. Elastic Properties of Unidirectional Ply	
1.4.3. Elastic Properties of Bidirectional Ply	
1.4.4. Stress-Strain Relationship for Orthotropic Materials	
1.5. FAILURE AND STRENGTH	
1.5.1. Composite Constituent Failure	
1.5.2. Metal Constituent Plasticity	
1.5.3. Delamination in FMLs	
1.6. Objective	18
1.7. Thesis Layout	18
CHAPTER 2 : LITERATURE REVIEW	20
2.1. Introduction	20
2.2. GFRP	21
2.3. FML	31
2.4. Numerical Simulation	40
CHAPTER 3: EXPERIMENTAL AND NUMERICAL WORK	43
3.1. Introduction	43
3.2. EXPERIMENTAL WORK	
3.2.1. Test Set-up	
3.2.2. Test Specimens	
3.2.3. Tensile Test	45

3.2.4. Flexure Test	46
3.2.5. Double Cantilever Beam (DCB) Test	47
3.3. NUMERICAL SIMULATION MODEL	48
3.3.1. Introduction	48
3.3.2. Explicit Analysis	48
3.3.3. Central Difference Method	49
3.3.4. Stability and Stable Time Increment	49
3.3.5. Energy Balance	50
3.3.6. Single Precision vs. Double Precision	51
3.3.7. Ply model	51
3.3.8. Laminate Assembly	52
3.3.8.1. GLARE	
3.3.8.2. GFRP	
3.3.9. Material Properties	
3.3.10. Boundary Conditions	
3.3.11. Delamination Modeling	
3.3.12. Meshing	
3.3.12.2. GFRP	
CHAPTER 4: RESULTS AND DISCUSSIONS	
4.1. Introduction	
4.2. Tensile Test	60
4.2.1. GLARE	60
4.2.2. GFRP	66
4.3. Flexure Test	69
4.3.1. GLARE	69
4.3.2. GFRP	74
4.4. DCB Test	77
4.4.1. GLARE	77
4.4.2. GFRP	82
4.5. COMPARISON BETWEEN GLARE AND GFRP RESPONSES	85
4.5.1. Tensile	85
4.5.2. Flexure	85
4.5.3. Fracture Toughness	86
4.6. COMPARISON BETWEEN WOVEN FIBER GLASS REINFORCED POLYESTER AND	D
Cross-ply (0/90°) Fiber Glass reinforced Epoxy based FML	87
CHAPTER 5 : CONCLUSIONS	88
REFERENCES	
APPENDIX 1: MATLAB CODE FOR GFRP MECHANICAL PROPERTI	
CALCULATION	93

Nomenclature and List of Abbreviations

Fiber Failure in Axial Direction

Nomenclature

a

Initial Crack Length

и	mittal Clack Longth	* f	Tion Tunare in Tixiai Birection
В	Specimen Width	F_m^t	Matrix Failure in Axial Direction
E	Elastic Modulus	F_f^c	Fiber Failure in Transverse Direction
G	Modulus of Rigidity	F_m^c	Matrix Failure in Transverse Direction
P	Applied Load		
V_{f}	Fiber Volume		
$V_{\rm m}$	Matrix Volume		
V_{c}	Composite Volume		
$\mathbf{v}_{\mathbf{f}}$	Fiber Volume Fraction		
\mathbf{v}_{m}	Matrix Volume Fraction		
$\mathbf{v}_{\mathbf{v}}$	Void Volume Fraction		
W_{f}	Fiber Weight		
W_{m}	Matrix Weight		
W_c	Composite Weight		
$\mathbf{w}_{\mathbf{f}}$	Fiber Weight Fraction		
\mathbf{w}_{m}	Matrix Weight Fraction		

 F_{ϵ}^{t}

- X^t Tensile strength in fiber direction
- X^C Compressive strength in fiber direction
- Y^t Tensile strength in matrix direction
- Y^t Compressive strength in matrix direction
- S^L Longitudinal shear strength S^T Transverse shear strength
- ρ_{ct} Composite Density
- ρ_m Matrix Density
- ρ_f Fiber Density
- υ Poisson Ratio
- γ Shear Strain
- κ Curvature
- ε Strain
- σ Stress
- δ Deflection

Abbreviation

- CLT Classical Laminate Theory
- CP Composite
- DCB Double Cantilever Beam
- FML Fiber Metal Laminate
- ILSS Interlaminar Shear Strength
- SERR Strain Energy Release Rate
- UD Unidirectional
- WF Woven Fiber

List of Tables

Table 1.1: Standard ARALL and GLARE grades [4]	6
Table 3.1: Flow Stress vs. corresponding Plastic Strain [43]	
Table 3.2: GFRP Mechanical Properties	
Table 3.3: Mechanical Properties of Standard Polyester Layup Resin	
Table 4.1: Summary of GLARE Laminate Tensile Response	
Table 4.2: Summary of GFRP Tensile Response	
Table 4.3: Summary of GLARE Laminate Flexure Response	
Table 4.4: Summary of GFRP Laminate Flexure Response	
Table 4.5: GLARE: Mode I Fracture Energy Summary of Results	
Table 4.6: GFRP: Mode I Fracture Energy Summary of Results	

List of Figures

Figure 1.1: Dutch Aircraft Fokker F-27 [3]	1
Figure 1.2: Schematic Presentation of FML [1]	3
Figure 1.3: Upper Fuselage Skin Glare Panels [4]	4
Figure 1.4: Schematic Presentation of Unidirectional / Bidirectional Lamina	9
Figure 1.5: Cross Section of a Laminate [22]	
Figure 1.6: Illustration of the Three Opening Modes [24]	.16
Figure 1.7: Different DCB Schematic Configurations: (a) M-C-M Configuration, (b)	C-
C Configuration, and (c) C-M-C configuration [29]	.17
Figure 2.1: Effect of Fibre Glass Volume Fraction on the Modulus of Elasticity of the	е
System [36]	.21
Figure 2.2: Effect of Fibre Glass Volume Fraction on the Ultimate Tensile Strength of	of
the System [36]	
Figure 2.3: Effect of Fibre Glass Volume Fraction on Strain of the System [36]	.22
Figure 2.4: Effect of Fibre Glass Volume Fraction on the Average Absorbed Energy	of
the System [36]	
Figure 2.5: Tensile Strength of Fabricated Composites [37]	
Figure 2.6: Flexural Strength Values of Fabricated Composites [37]	
Figure 2.7: ILSS Values of Fabricated Composites [37]	
Figure 2.8: 1st Natural Frequency of Fabricated Composites [37]	.24
Figure 2.9: 2nd Natural Frequency of Fabricated Composites [37]	
Figure 2.10: 3rd Natural Frequency of Fabricated Composites [37]	
Figure 2.11: Stress versus Strain of Tested Specimens [38]	
Figure 2.12: Young's Modulus versus Curing Pressure [38]	.26
Figure 2.13: Flexural, Tensile and Interlaminar Shear Strength (ILSS) of the	
Composites [39]	.26
Figure 2.14: Structure of the Soypolyol 204 and Jeffol G30-650 [39]	
Figure 2.15: Interlaminar Shear Strength for Composite with Bisphenolic Resin (BR)	
[40]	.28
Figure 2.16: Interlaminar Shear Strength for Composite with Water Resistant Resin	• •
(WR) [40]	.28
Figure 2.17: Interlaminar Shear Strength for Composite with Acid Resistant Resin (A	
[40]	
Figure 2.18: Interlaminar Shear Strength [40]	
Figure 2.19: Load-Displacement Curves for Different Reinforcement Content [40]	
Figure 2.20: FEA models of DCB specimen [42]	.30
Figure 2.21: Comparison of Load–Displacement Curves for all Kinds of Specimens	20
[42]	
Figure 2.22: Tensile Response of GLARE-1 [43]	
Figure 2.23: Tensile Response of GLARE-2 [43]	
Figure 2.24: Tensile Response of GLARE-3 [43]	
Figure 2.25: Stress-Strain Curves [44]	
Figure 2.26: Metal Thickness Fraction vs Yield Stress for FML [44]	
Figure 2.27: Stress–Strain Curves of GLARE 4-3/2 under Uniaxial Tensile Loading (
Longitudinal; (b) Transverse [45]	.33
Figure 2.28: Stress–Strain Curves of GLARE 5-2/1 under Uniaxial Tensile Loading [45]	21
ITJ	. J4

Figure 2.29: Tensile Strength Prediction [45]	34
Figure 2.30: Stress–Strain Curves [3]	
Figure 2.31: FEM Prediction of Stress-Strain Curve for GLARE 5-2/1 [46]	
Figure 2.32: Stress–Strain Curves of GLARE Grades [46]	
Figure 2.33: The Correlation between Apparent ILSS values and L/h ratios for three	
	36
Figure 2.34: The Load-Deflection Curves of three different Lay-up Specimens (a) for	
L/h ratio of 5, (b) for L/h ratio of 8 [47]	
Figure 2.35: Failure Modes after Short-Beam three-point Bending tests with various	
L/h ratios: Specimens of (a) GLARE 2A, (b) GLARE 3, (c) GLARE 6 [47]	
Figure 2.36: Finite Element Model of the GFRP base FML for three-point Bending t	
in contrast with Real Set-up [48]	
Figure 2.37: The Deformed Shapes of the FMLs after three-point Bending test, (a)	
Experimental and (b) Numerical Simulations [48]	38
Figure 2.38: Validation of Flexural Load-Displacement Curve [48]	
Figure 2.39: Mode-I Fracture of the C-M-C Configuration of Permanent Plastic	
Deformation [29]	39
Figure 2.40: Load-Displacement Curve [29]	
Figure 2.41: Fracture Energy-Crack Extension [29]	
Figure 3.1: Testing Machine Configuration	
Figure 3.2: Test Specimen	
Figure 3.3: Tensile Specimen Gripping	
Figure 3.4: Theoretical Tensile Stress Strain Curve	
Figure 3.5: Flexural Test Set-up	
Figure 3.6: DCB Specimen Fixation	
Figure 3.7: Theoretical Load Displacement Trace from DCB Test	
Figure 3.8: Energy history for quasi-static tensile test [16]	
Figure 3.9: (a) Ply Dimensions, (b) ABAQUS® Half-Ply Model - Top View	
Figure 3.10: (a) GLARE Laminate 3D Model, (b) Laminate Stacking Sequence	
Figure 3.11: GFRP Laminate 3D Model	
Figure 3.12: Tensile Test Model Boundary Conditions	
Figure 3.13: Bending Test Model Boundary Conditions	
Figure 3.14: DCB Test Model Boundary Conditions	
Figure 3.15: DCB Test Un-tied Surface Modeling	
Figure 3.16: Schematic of Traction-Separation Law [16]	
Figure 3.17: (a) Top-view of Meshed Laminate, (b) 3D Meshed Model of GLARE	
Laminate, (c) 3D Rigid Body Model of Loading Anvil	58
Figure 3.18: 3D Meshed Model of GFRP Laminate	
Figure 4.1:GLARE: Tensile Experimental Results	
Figure 4.2: GLARE: Tensile Response	
Figure 4.3: GLARE: Al Yielding Effect on Interlaminar Shear Stresses [4]	
Figure 4.4: GLARE: Matrix Failure Initiation using HSNMTCRT parameter	
Figure 4.5: GLARE: Interlaminar Failure Initiation using CSQUADSCRT parameter	
Figure 4.6: GLARE: Delamination and Fiber Breakage (a) at the middle of the	
Laminate, (b) near the Moveable Grip, (c) at the end of the Experiment	64
Figure 4.7: GLARE: Laminate Response during Loading	
Figure 4.8: Variation of Kinetic and Internal Energies with Simulation Time	
Figure 4.9: GFRP: Tensile Response (Force – Deflection)	
Figure 4.10: GFRP: Tensile Response (Stress – Strain)	
Figure 4.11: GFRP: Fibers Failure Initiation	

Figure 4.12: GFRP: Damaged Laminate (a) at the end of the simulation, (b) at the en	ıd
of the test.	
Figure 4.13: Variation of Kinetic and Internal Energies with Simulation Time	69
Figure 4.14: GLARE: Flexure Experiments' Results	70
Figure 4.15: GLARE: Flexure Response (Force - Deflection)	71
Figure 4.16: GLARE: Failure of Upper Matrix Bond of the Laminate	72
Figure 4.17: GLARE: Undamaged Lower Fibers subjected to Tension	72
Figure 4.18: GLARE: Undamaged Upper Fibers subjected to Compression	72
Figure 4.19: GLARE: Damaged Laminate at the end of the Experiment	73
Figure 4.20: GLARE: Upper Bond Failure at the Location of Maximum Stress	73
Figure 4.21: GLARE: Lower Aluminium and Fiber Layers Captured Failure	73
Figure 4.22: Variation of Kinetic and Internal Energies with Simulation Time	74
Figure 4.23: GFRP: Flexure Response (Force - Deflection)	74
Figure 4.24: GFRP: Effect of Mesh Element Size on Bending Test Simulation	75
Figure 4.25: GFRP: 3D Bending Test Simulation	76
Figure 4.26: GFRP: Damaged Laminate at the end of the Experiment	76
Figure 4.27: GFRP: Upper Fibers Failure Initiation	76
Figure 4.28: GFRP: Upper Fibers Failure Evolution	76
Figure 4.29: Variation of Kinetic and Internal Energies with Simulation Time	77
Figure 4.30: GLARE: Experimental and Numerical Force Displacement Curve for	
Initial Crack Length a = 24 mm	78
Figure 4.31: Experimental and Numerical Force Displacement Curve for Initial Crac	ck
Length $a = 29 \text{ mm}$	
Figure 4.32: Comparison between Numerical Results of Different Initial Crack Leng	gths
a= 24, 29, and 40 mm	
Figure 4.33: GLARE: DCB test simulation at (a) the beginning of the test, (b) the Er	
of Delamination Process, showing the CSQUADSCRT parameter value	
Figure 4.34: GLARE: Undeformed Laminate Prior to Test	
Figure 4.35: GLARE: Delaminated GLARE Laminate after Test	
Figure 4.36: GLARE: 3D Representation of Delaminated Laminate	
Figure 4.37: Variation of Kinetic and Internal Energies with Simulation Time (a=24	
mm)	
Figure 4.38: Variation of Kinetic and Internal Energies with Simulation Time (a=29	
mm)	
Figure 4.39: GFRP: Experimental and Numerical Force Displacement Curve for Init	
Crack Length a = 40 mm	
Figure 4.40: GFRP: DCB test simulation at (a) the beginning of the test, (b) the End	
Delamination Process, showing the CSQUADSCRT parameter value	
Figure 4.41: GLARE: Delaminated GLARE Laminate after Test	
Figure 4.42: Comparison between different Energies in the FE DCB Model	
Figure 4.43: Comparison of Ultimate Tensile Strength	
Figure 4.44: Comparison of Flexural Strength	
Figure 4.45: Comparison of Interlaminar Shear Strength	
Figure 4.46: Comparison of Mode I Fracture Energy	
Figure 4.47: Comparison between Woven Fiber Glass reinforced Polyester	87

Abstract

Fiber Metal Laminates (FMLs) are special kind of composite structures that are composed of metallic sheets bonded together with composite plies. In the present study, the tensile, bending, and fracture toughness of FMLs are investigated. FMLs in this study consist of aluminium layers having thickness of 0.4 mm each, and woven polyester reinforced fiber glass plies of thickness 0.45 mm each commercially named as Glare. The laminate stacking was set as the [3/2] stacking sequence, in the form of [Al/G/G/Al/G/G/Al], to compose a laminate of seven plies having a total thickness of 3 mm. In order to get deeper understanding of the laminate damage sequence due to different loading conditions, a computationally efficient and reliable finite element model was developed using the commercial software ABAQUS®. Dynamic/Explicit solver was used for the simulation of the three types of tests to capture the damage initiation and evolution process accurately. The ductile damage was used to capture the aluminium layers failure, while the Hashin failure criterion was used to model the failure of composite layers exhibited in the laminate, and the cohesive surface interaction technique to capture delamination between layers. The results obtained from experiments and predicted by Finite Element Analysis (FEA) were then compared and found to be in good agreement. The tensile strength was about 321 MPa at a strain of 2.85% of the gauge length. The interlaminar shear strength (ILSS), flexural strength and corresponding strain were obtained from bending test. The interlaminar shear strength was about 10.4 MPa, and flexural strength had a value of 554 MPa at a strain of 2%. The strain energy release rate was the aimed output from the Double Cantilever Beam (DCB) test, two different initial crack lengths (a) having values of 24 mm and 29 mm respectively were investigated experimentally and numerically. While an initial crack of 40 mm was investigated numerically. The effect of the initial crack length on the Mode-I fracture energy was found to be directly proportional, while the existence of the metal constituent in the laminate led to an increase in the fracture energy due to the effect of the metal plasticity. The Mode I fracture energy was found to be 3 kJ/m². The captured damaged simulated models from ABAQUS® were extracted and compared to the final damaged models obtained experimentally and were in good agreement.

The effect of the replacement of cross-ply (0/90°) glass fiber reinforced epoxy laminas with woven glass fiber reinforced polyester laminas in GLARE laminates on the tensile, bending and interlaminar fracture toughness of the laminate was investigated. Tests results showed that the existence of woven glass fiber laminas increased the tensile strength with decrease in corresponding strain, the flexure strength decreased significantly due to the existence of polyester instead of epoxy resin, and the Mode I interlaminar fracture toughness increased.

In order to visualize Glare strength with respect to their relevant pure composite structures, a detailed finite element model was developed for a composite laminate available in the literature. The investigated composite laminate consists of 26 plies of woven polyester reinforced fiber glass. The tensile strength was about 303 MPa at a strain of 1.73% of the gauge length, while ILSS was about 5.85 MPa, and the flexural strength had a value of 445 MPa at a strain of 1.585% of the gauge length, and the Mode I fracture energy was found to be 1.63 kJ/m².