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Abstract

Fiber Metal Laminates (FMLs) are special kind of composite structures that are
composed of metallic sheets bonded together with composite plies. In the present study,
the tensile, bending, and fracture toughness of FMLs are investigated. FMLs in this
study consist of aluminium layers having thickness of 0.4 mm each, and woven
polyester reinforced fiber glass plies of thickness 0.45 mm each commercially named as
Glare. The laminate stacking was set as the [3/2] stacking sequence, in the form of
[Al/G/G/AI/G/G/Al], to compose a laminate of seven plies having a total thickness of 3
mm. In order to get deeper understanding of the laminate damage sequence due to
different loading conditions, a computationally efficient and reliable finite element
model was developed using the commercial software ABAQUS®. Dynamic/Explicit
solver was used for the simulation of the three types of tests to capture the damage
initiation and evolution process accurately. The ductile damage was used to capture the
aluminium layers failure, while the Hashin failure criterion was used to model the
failure of composite layers exhibited in the laminate, and the cohesive surface
interaction technique to capture delamination between layers. The results obtained from
experiments and predicted by Finite Element Analysis (FEA) were then compared and
found to be in good agreement. The tensile strength was about 321 MPa at a strain of
2.85% of the gauge length. The interlaminar shear strength (ILSS), flexural strength
and corresponding strain were obtained from bending test. The interlaminar shear
strength was about 10.4 MPa, and flexural strength had a value of 554 MPa at a strain
of 2%. The strain energy release rate was the aimed output from the Double Cantilever
Beam (DCB) test, two different initial crack lengths (a) having values of 24 mm and 29
mm respectively were investigated experimentally and numerically. While an initial
crack of 40 mm was investigated numerically. The effect of the initial crack length on
the Mode-I fracture energy was found to be directly proportional, while the existence of
the metal constituent in the laminate led to an increase in the fracture energy due to the
effect of the metal plasticity. The Mode I fracture energy was found to be 3 kJ/m?. The
captured damaged simulated models from ABAQUS® were extracted and compared to
the final damaged models obtained experimentally and were in good agreement.

The effect of the replacement of cross-ply (0/90°) glass fiber reinforced epoxy
laminas with woven glass fiber reinforced polyester laminas in GLARE laminates on
the tensile, bending and interlaminar fracture toughness of the laminate was
investigated. Tests results showed that the existence of woven glass fiber laminas
increased the tensile strength with decrease in corresponding strain, the flexure strength
decreased significantly due to the existence of polyester instead of epoxy resin, and the
Mode I interlaminar fracture toughness increased.

In order to visualize Glare strength with respect to their relevant pure composite
structures, a detailed finite element model was developed for a composite laminate
available in the literature. The investigated composite laminate consists of 26 plies of
woven polyester reinforced fiber glass. The tensile strength was about 303 MPa at a
strain of 1.73% of the gauge length, while ILSS was about 5.85 MPa, and the flexural
strength had a value of 445 MPa at a strain of 1.585% of the gauge length, and the
Mode I fracture energy was found to be 1.63 kJ/m’.
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