

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

Assessment of Remineralization of Artificially Demineralized Enamel Lesions using Different Remineralizing Approaches at Different Time Intervals

Thesis Submitted to Operative Department,
Faculty of Dentistry Ain Shams University
For Partial Fulfillment of the Requirements of Doctor Degree
In Operative Dentistry
By

By

Maha Salah Abd El-latif Mostafa

B.D.Sc. Faculty of Dentistry, Ain Shams University, 2009
M.Sc Faculty of Dentistry, Ain Shams University, 2015
Assistant Lecturer of Operative Dentistry, Faculty of Dentistry,
Ain Shams University

Supervisors

Dr. Khaled Ali Nour

Assistant professor of Operative Dentistry Faculty of Dentistry, Ain Shams University

Dr. Mohammed Nasser Mohammed Anwer

Lecturer of Operative Dentistry
Faculty of Dentistry, Ain Shams University

Dr. Hooi Pin Chew

Associate Professor-Faculty of Dentistry, MDRCBB University of Minnesota, United States of America

Acknowledgement

My deepest gratitude to my supervisor, **Prof. Dr. Khaled**Ali Nour. I have been fortunate to have an advisor who taught
me how to question thoughts and express ideas. His insightful
comments and constructive criticisms helped me focus my
ideas.

I wish to express my sincere appreciation and gratitude to my co-supervisor, **Dr. Mohammed Nasser Mohammed Anwer**, who has been always there to listen and give advice His patience and support helped me finish this study.

My dear supervisor **Dr. Hooi Pin Chew**, I am to her grateful for being always, supporting, guiding, and advising throughout my work in the University of Minnesota.

To **Mom and Dad**. A million Words would be too short for your love and care through my entire life.

To my sister, brother-in-law, and nephew

Thank you for being there in every step of the way.

To my Professor Dr.Mokhtar Nagy

May Allah have mercy on him and place him into heavens.

Table of Contents

Table of	Contents	i
List of T	ables	iii
List of F	ïgures	xi
Introduc	tion	1
Review	of Literature	3
2.1	DENTAL CARIES	3
2.2	ENAMEL WHITE SPOTS	6
2.3	METHODS OF ASSESSMENT OF WHITE SPOT LESION	11
2.4	MODELS OF ARTIFICIALLY INDUCED WHITE SPOT LESION	27
2.5	MANAGEMENT OF WHITE SPOT LESIONS	31
2.6	STATEMENT OF THE PROBLEM	41
Aim of t	he study	42
Material	s and Methods	43
4.1	SAMPLE PREPARATION	43
4.2	EXPERIMENTAL GROUPS:	48
4.3	TEMPORAL ASSESSMENT OF PH CYCLING:	53
4.4	ASSESSMENT METHODS:	57
4.5	STATISTICAL ANALYSIS:	71
Results		72
5.1	QUALITATIVE REPRESENTATION OF MICRO-CT AND OCT SCANS BE	FORE AND
	AFTER ENAMEL DEMINERALIZATION:	72
5.2	TEST OF NORMALITY	78
5.3	COMPARISONS BETWEEN LESION SEVERITY 48 HRS. VERSUS 72 HRS.	79
5.4	EVALUATION OF THE REMINERALIZATION RATE OF EACH OF THE DIF	FERENT
	REMINERALIZING AGENTS	84

5.5	COMPARISON OF THE REMINERALIZATION RATE OF THE DIFFERENT	
	REMINERALIZING AGENTS:	101
5.6	EVALUATION OF THE RESISTANCE TO FURTHER DEMINERALIZATION AT THE	ΉE
	END OF 12 PH-CYCLES OF THREE DIFFERENT MINERALIZING AGENTS	121
5.7	CORRELATION RESULTS:	129
Discussi	on	131
Summar	у	144
Conclus	ions and Recommendations	146
Reference	ces	148
Arabic S	Summary	1

List of Tables

Table 4.1: Trade names, chemical composition, application, and manufacturers of the experimental materials. 51
Table 4.2: Chemical composition and duration used for the pH cycling solutions
Table 5.1: Descriptive statistics and results of Mann-Whitney U test and Independent t test for comparison between lesion severity (48 and 72 hrs.) effect on the four remineralizing agents
Table 5.2: Descriptive statistics and results of Friedman's test for comparison between lesion depths measured with Micro-Ct through de/remineralization process in lesions induced after 48 hours
Table 5.3: Dunn's test for pairwise comparisons for significant Friedman's test values. 89
Table 5.4: Descriptive statistics and results of Friedman's test for comparison between lesion depths measured with Micro-Ct through de/remineralization process in lesions induced after 72 hours90
Table 5.5: Dunn's test for pairwise comparisons for significant Friedman's test values 90
Table 5.6: Descriptive statistics and results of Friedman's test for comparison between Interprismatic demineralization depth IPD _{OCT} after de/remineralization process in lesions induced after 48 hours
Table 5.7: Dunn's test for pairwise comparisons for significant Friedman's test values
Table 5.8: Descriptive statistics and results of Friedman's test for comparison between Interprismatic demineralization depth IPD _{OCT} after de/remineralization process in lesions induced after 72 hours
Table 5.9: Dunn's test for pairwise comparisons for significant Friedman's test values. 93

Table 5.10: Descriptive statistics and results of Friedman's test for comparison between lesion mean mineral density (ΔZ) after de/remineralization process in lesions induced after 48 hours
Table 5.11: Dunn's test for pairwise comparisons for significant Friedman's test values 95
Table 5.12: Descriptive statistics and results of Friedman's test for comparison between lesion mean mineral density after de/remineralization process in lesions induced after 72 hours
Table 5.13: Dunn's test for pairwise comparisons for significant Friedman's test values. 96
Table 5.14: Descriptive statistics and results of Friedman's test for comparison between Integrated Reflectivity after de/remineralization process in lesions induced after 48 hours
Table 5.15: Dunn's test for pairwise comparisons for significant Friedman's test values. 98
Table 5.16: Descriptive statistics and results of Friedman's test for comparison between Integrated Reflectivity after de/remineralization process in lesions induced after 72 hours
Table 5.17: Dunn's test for pairwise comparisons for significant Friedman's test values. 99
Table 5.18: Descriptive statistics and results of Kruskal-Wallis test for comparison of rate of remineralization between different remineralizing agents in lesions induced after 48 hrs. for the Lesion depth measured with Micro-Ct (LD _{MCT})
Table 5.19: Dunn's test for pairwise comparisons for significant Kruskal-Walli's test values. 102
Table 5.20: Descriptive statistics and results of Kruskal-Wallis test for comparison of rate of remineralization between different remineralizing agents in lesions induced after 48 hrs. for the Lesion depth measured with OCT outcome measure (IPD _{OCT})

Table	5.21: Descriptive statistics and results of Kruskal-Wallis test for comparison of rate of remineralization between different remineralizing agents in lesions induced after 48 hrs. for the mean grey value outcome measure measured with Micro-Ct (ΔZ_{200})
Table	5.22: Dunn's test for pairwise comparisons for significant Kruskal-Wallis test values
Table	5.23: Descriptive statistics and results of Kruskal-Wallis test for comparison of rate of remineralization between different remineralizing agents in lesions induced after 48 hrs. for the integrated reflectivity outcome measure measured with OCT (IR_{20-100})
Table	5.24: Descriptive statistics and results of Kruskal-Wallis test for comparison of rate of remineralization between different remineralizing agents in lesions induced after 72 hrs. for the Lesion depth measured with Micro-Ct outcome measure (LD_{MCT})
Table	5.25: Dunn's test for pairwise comparisons for significant Kruskal-Wallis test values
Table	5.26: Descriptive statistics and results of Kruskal-Wallis test for comparison of rate of remineralization between different remineralizing agents in lesions induced after 72 hrs. for the Lesion depth measured with OCT outcome measure (IPD _{OCT}).
Table	5.27: Dunn's test for pairwise comparisons for significant Kruskal-Wallis test values
Table	5.28: Descriptive statistics and results of Kruskal-Wallis test for comparison of rate of remineralization between different remineralizing agents in lesions induced after 72 hrs. for the mean grey value outcome measure measured with Micro-Ct (ΔZ_{200}).
Table	5.29: Descriptive statistics and results of Kruskal-Wallis test for comparison of rate of remineralization between different remineralizing agents in lesions induced after 72 hrs. for the integrated reflectivity outcome measure measured with OCT (IR ₂₀₋₁₀₀)

Table	5.30: Descriptive statistics and results of Wilcoxon Signed Rank test for comparison between the end of the 12 pH-Cycles and the DMII time points in lesions induced after 48 hours
Table	5.31: Descriptive statistics and results of Wilcoxon Signed Rank test for comparison between the end of the 12 pH-Cycles and the DMII time points in lesions induced after 72 hours
Table	5.32: Results of Spearman's' correlation coefficient for the correlation between lesion depth for Micro-Ct and OCT and ΔZ and the IR 129

List of Figures

	2.1: Schematic representation of Enamel hierarchy. The tooth and-supporting structure (a). Enamel structure (b.) Rod structure (c) ⁽³⁴⁾
Figure	2.2: Micro computed tomography (Micro-Ct) setup. (84)
	2.3: Schematic illustration of swept source optical coherence tomography (SS-OCT) system. Near-infrared laser is emitted and divided into a signal and a reference beam. Reference light and backscattered light from the sample are recombined by a second fiber. (100)
_	2.4: Diagrammatic representation of A-scans and B-scans direction within the cross-sectional slice of sample investigated
:	2.5: 3D OCT tomographic image of occlusal surface (a). The B-scan image shows the position and depth and the magnitude of the reflectivity light at each pixel (d). Two A-scans of reflectivity vs. depth are presented in the sound and demineralized areas ⁽⁸⁰⁾
_	2.6: OCT B-scans of buccal surface of crown generated with default grey value and different color map for better visualization
_	2.7: Schematic diagram representing stages of amelogenesis presecretory, secretory, transition, maturation, and post maturation stage ⁽¹⁵⁸⁾
_	2.8: (a) The amino acid sequence of P11-4. The sidechains are labelled according to the peptide back. (b) Schematic presentation of the self-assembling process. (168)
J	4.1: Swept-source OCT (SS-OCT) setup used in this study, high speed scanning laser source (a), handheld probe in a holder (b), microscope stage (c), computer display(d).
_	4.2: SS-OCT B-scan at intensity threshold 21-28 dB of specimen (a) with no subsurface demineralization and (b) with subsurface demineralization

Figure 4.3: Isomet used to cut samples occluso-gingivally in mesio-distal direction under running water
Figure 4.4: Customized acrylic mold used to mount samples using self-cured acrylic resins
Figure 4.5: Mounted specimen with whole crown painted with acid resistant nail varnish except for the region of interest that is identified by the four corner holes (white arrows) prepared with carbide bur
Figure 4.6: Diagram represents the experimental groups
Figure 4.7: Customized jig used to standardize sample position in the OCT (a). Representative view of the sample positioned on the microscope stage of OCT (b). White arrows point at the light beam from the probe of OCT.53
Figure 4.8: Customized jig used to standardize sample position in the Micro-Ct (a). Representative view of an samples positioned on the turntable in the Micro-Ct chamber apparatus. White arrow point at the exit site of X-ray beam from the target of Micro-Ct (b)
Figure 4.9: Diagrammatic chart showing the experimental flow after artificial carious lesion formation
Figure 4.10: The Micro-Ct machine used in this study. The red arrow points to the control panel used to operate and preview the sample position. The black arrow points to the chamber in which the sample is placed to be scanned
Figure 4.11: A representative illustration of a 3D rendered Micro-Ct scan, showing the three planes: sagittal (red), coronal (green)and horizontal (blue). Ten frames were selected from the horizontal cross section. After super imposition of the volumes all five time points guided by the reference holes
Figure 4.12: A representative illustration of the extracted ten frames from each time point using the horizontal cross section view
Figure 4.13: Operations for the measurement of mean lesion depth: (a) Surface determination and segmentation of the lesion; (b) Annotation of the lateral

limits of the ROI using the co-ordinates from the MS Paint software; (c) Computation of the normal distances between the surface and the boundary between the lesion and sound enamel
Figure 4.14: Micro-Ct cross-section being processed, and surface aligned with MATLAB to generate mean mineral intensity line profile to compute ΔZ.
Figure 4.15: Corresponding 3D reconstructed Micro-Ct scan (a-b) and OCT surface view of the same sample. Green and red horizontal lines detecting the ROI from which B-scans was selected and it corresponds to the green and red arrows on the 3D Micro-Ct scan
Figure 4.16: Processed B-scan file using the MATLAB software. Red and yellow color indicate the demineralized zone after removal of the background. Normal main angle of the surface was determined
Figure 4.17: Blue line indicate the surface and red and yellow lines indicates the deepest pixel of the demineralized area
Figure 4.18: Processed images before (a) and after (b) surface alignment to be leveled with the highest point of the surface
Figure 5.1: Horizontal Micro-Ct scan of sound enamel surface showing enamel (E), dentino- enamel junction (DEJ) and dentine (D)73
Figure 5.2: SS-OCT B-scan of sound enamel surface showing enamel (E), dentino-enamel junction (DEJ) and dentine (D). Region of interest (ROI) boundaries are demarcated with white dotted lines
Figure 5.3: Micro-Ct scans representing artificial carious lesion induced in enamel with buffered lactic acid after 48 hrs.(a) and 72 hrs.(b). Red arrow indicate consistent and continuous surface layer present in the 72 hrs. lesion (b)
Figure 5.4: SS-OCT B-scans of enamel demineralization after 48 hrs. (1-a, b & c) and 72 hrs. (2-a, b & c). Different color maps used to enhance visualization of different intensity (dB) threshold (a) (b) (c). Red arrow pointing to surface layer formation in the 72 hrs. lesion

Figure 5.5: Average relative mineral intensity line profiles of Micro-Ct scans of samples representing sound enamel, demineralized samples for 48 hrs. and 72 hrs. using buffered lactic acid pH 4.5 lactic acid. ΔZ represent the integrated mineral loss to depth for each line profile
Figure 5.6: Average Intensity depth profiles of OCT A-scans of samples representing sound enamel, demineralized samples for 48 hrs. and 72 hrs. using buffered lactic acid pH 4.5 (IR) represents the integrated reflectivity to depth for each line profile
Figure 5.7: Box plot showing the effect of lesion severity on different remineralizing agents on lesion depth reduction% using the Micro-Ct. * Represents the sig. difference between the 48 hrs. and 72 hrs. lesion for each remineralizing agent
Figure 5.8: Box plot showing the effect of lesion severity on different remineralizing agents on the % change of mean mineral density using the Micro-Ct. * Represent the sig. between the 48 hrs. and 72 hrs. lesion for each remineralizing agent
Figure 5.9: Box plot showing the effect of lesion severity on different remineralizing agents on Interprismatic demineralization depth reduction% using the OCT. * Represent the sig. between the 48 hrs. and 72 hrs. lesion for each remineralizing agent
Figure 5.10: Bar chart showing the effect of lesion severity on different remineralizing agents on Integrated reflectivity reduction% using the OCT
Figure 5.11: Box plots showing change of the lesion depth using different remineralizing agents over different time points in 48 hrs. lesion. Black*showed significance change with (DMI) and Red*showed significance change with(6C)
Figure 5.12: Box plots showing change of the lesion depth using different remineralizing agents over different time points in 72 hrs. lesion. Black*showed significance change with (DMI) and Red*showed significance change with(6C)