

بسم الله الرهكن الرّحيم

$\infty \infty \infty$

تم رفع هذه الرسالة بواسطة /صفاء محمود عبد الشافي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لايوجد

SALT TOLERANCE AND PRODUCTIVITY OF BARLEY (Hordeum vulgare L.) AND GRAIN SORGHUM (Sorghum bicolor L.) PLANTS IN SANDY SOIL

By

MONTASER HASSAN MOHAMED YOUSSEF

B.Sc. Agric. Sc. (Horticulture), Fac. Agric. Ain Shams University, 2014

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Degree of

MASTER OF SCIENCE in Agricultural Sciences (Plant Physiology)

Department of Agricultural Botany
Faculty of Agriculture
Ain Shams University

Approval Sheet

SALT TOLERANCE AND PRODUCTIVITY OF BARLEY (Hordeum vulgare L.) AND GRAIN SORGHUM (Sorghum bicolor L.) PLANTS IN SANDY SOIL

By

MONTASER HASSAN MOHAMED YOUSSEF

B.Sc. Agric. Sc. (Horticulture), Fac. Agric., Ain Shams University, 2014

This	s Thesis for M.Sc. Degree has been approved by:
	Amr Adel Mohamed El Kelish Associate Prof. of Plant Physiology, Faculty of Science, Suez Canal University.
	Hatem Mohamed Ashour Abd El-Salam Associate Prof. of Plant Physiology, Faculty of Agriculture, Ain Shams University.
	Mohamed Farag Mohamed Ibrahim Associate Prof. of Plant Physiology, Faculty of Agriculture, Ain Shams University.

Date of Examination: 27 / 2/ 2022

SALT TOLERANCE AND PRODUCTIVITY OF BARLEY (Hordeum vulgare L.) AND GRAIN SORGHUM (Sorghum bicolor L.) PLANTS IN SANDY SOIL

By

MONTASER HASSAN MOHAMED YOUSSEF

B.Sc. Agric. Sc. (Horticulture), Fac. Agric. Ain Shams University, 2014

Under the supervision of:

Dr. Aly Rafaat Youssef Rafaat

Prof. Emeritus of Plant Physiology, Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, (Principal Supervisor).(late)

Dr. Mohamed Farag Mohamed Ibrahim

Associate Professor of Plant Physiology, Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University.

ABSTRACT

Montaser Hassan Mohamed Youssef: Salt Tolerance and Productivity of Barley (*Hordeum vulgare* L.) and Grain Sorghum (*Sorghum bicolor* L.) Plant in Sandy Soil. Unpublished M.Sc. Thesis, Department of Botany, Faculty of Agriculture, Ain Shams University, 2021.

This study was carried out to was to investigate the influence of potassium silicate on the growth and yield of great millet (Sorghum bicolor L. Moench cv. Dorado) plants and barley (Hordeum vulgare L. cv. Giza 123) plants grown under salinity stress in the two successive seasons of 2018 and 2019 in the Faculty of Agriculture, Ain Shams University, Qalyubia Governorate, Egypt. Four concentrations of salinity at 0, 50, 100 and 150 mM of NaCl were used. Pure sodium chloride was dissolved in tap water to prepare the concentrations. Three concentrations of foliar sprayings of potassium silicate were used at 0, 1 and 2 mM. Results revealed that saline water irrigation decreased vegetative growth, flowering parameters, chlorophyll a and b, relative water content (RWC) percentage. As the salinity concentration increased, the osmolytes content, H₂O₂ and antioxidant enzymes, i.e. APX, CAT and POX were increased. Concerning the minerals content, increasing the salinity level decreased in K and Si percentages, however, Na percentage was increased in both seasons at great millet and barley plants. With respect for yield attributes, increasing the salinity concentration decreased the yield attributes, i.e. grain yield/plant, panicle weight and spike weight for great millet and barley plants.

The application of potassium silicate alleviates the negative effects of salinity on plants. Under each salinity concentration, the application of potassium silicate at 1 and 2 mM enhanced the vegetative growth parameters, chlorophyll pigments, RWC percentage, the concentrations of proline, sugars and antioxidant capacity in term of scavenging ROS by DPPH (antioxidant activity) and the antioxidant

enzymes, i.e. APX, CAT and POX as compared to control treatments. In addition, potassium silicate significantly diminished the concentration of H_2O_2 to the minimum levels compared to untreated plants of great millet and barley. Also, the application of potassium silicate at 1 and 2 mM under each salinity concentration significantly increased the grain yield/plant, panicle weight and spike weight for great millet and barley plants.

Generally, spraying potassium silicate at 1 or 2 mM with all the salinity concentrations enhanced the grain yield/plant at grain sorghum and barley plants as compared to control treatments.

Keywords: Barley, Grain sorghum, K₂O₃Si, Salinity, NaCl, Antioxidant capacity and Enzymes activity

ACKNOWLEDGEMENT

First of all, thanks to Allah for offering me the strength to fulfill this hard mission

I'm deeply indebted to **Professor Dr. Aly Rafaat Youssef Rafaat,** Emeritus professor of plant physiology, Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University for suggesting the current study, supervision and continuous guidance. Also, I would like to thank him for his kind support and revision of this thesis.

I'm grateful to **Dr. Mohamed Farag Mohamed Ibrahim,** Associate Professor of plant physiology, Department of Botany, Faculty of Agriculture, Ain Shams University for his kind supervision, patriotic patience, energetic guidance, valuable advices in preparing and for writing and revision of the manuscript. I will always remember his generous help work.

Also I wish to express my deep thanks to my **family** for their kind encouragement and sincere help.

Finally, I am indebted as gift to my **parents** for their continuous encouragement and praying for me.

CONTENTS

	Page
LIST OF TABLES	\mathbf{V}
LIST OF FIGURES	VI
ABBREVIATIONS	XI
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	3
2.1. Effect of salinity	3
2.1.1. Effect of salinity on vegetative growth characteristics.	3
2.1.2. Effect of salinity on photosynthetic pigments	15
2.1.3. Effect salinity on leaf water status	20
2.1.4. Effect of salinity on osmolytes	22
2.1.5. Effect of salinity on oxidative stress	24
2.1.6. Effect of salinity on antioxidant capacity	24
2.1.7. Effect of salinity on minerals content	27
2.1.8. Effect of salinity on yield	33
2.2. Effect of potassium silicate application	37
2.2.1. Effect of potassium silicate foliar spray on vegetative	
growth characteristics	37
2.2.2. Effect of potassium silicate on photosynthetic	
pigments	41
2.2.3. Effect of potassium silicate foliar spray on leaf water	
status	43
2.2.4. Effect of potassium silicate foliar spray on osmolytes	43
2.2.5. Effect of potassium silicate foliar spray on oxidative	
stress	45
2.2.6. Effect of potassium silicate foliar spray on	

antioxidant capacity
2.2.7. Effect of potassium silicate foliar spray on minerals
content
2.2.8. Effect of potassium silicate foliar spray on yield
2.3. Effect of interaction between potassium silicate and
salinity applications
2.3.1. Effect of interaction between potassium silicate and
salinity applications on vegetative growth
2.3.2. Effect of interaction between potassium silicate and
salinity applications on photosynthetic pigments
2.3.3. Effect of interaction between potassium silicate and
salinity applications on leaf water status
2.3.4. Effect of interaction between potassium silicate and
salinity applications on osmolytes
2.3.5. Effect of interaction between potassium silicate and
salinity applications on oxidative stress
2.3.6. Effect of interaction between potassium silicate and
salinity applications on antioxidant capacity
2.3.7. Effect of interaction between potassium silicate and
salinity applications on minerals content
2.3.8. Effect of interaction between potassium silicate and
salinity applications on yield
3. MATERIALS AND METHODS
3.1. Plant material and cultivation
3.2. Experimental design.
3.3. Data recorded
3.3.1. Vegetative growth characteristics
3.3.2. Photosynthetic pigments

3.3.3. Leaf water status.	73
3.3.4. Osmolytes	74
3.3.5. Oxidative damage	74
3.3.6. Antioxidant capacity	74
3.3.6.1. Scavenging capacity	74
3.3.6.2. Antioxidant enzymes activity	75
3.3.7. Minerals content	76
3.3.8. Yield attributes	77
3.4. Statistical analysis	77
4. RESULTS	78
4.1. Effect of salinity and potassium silicate on sorghum	
plants	78
4.1.1. Vegetative growth	78
4.1.2. Photosynthetic pigments	82
4.1.3. Leaf water status	85
4.1.4. Osmolytes	86
4.1.5. Oxidative stress	88
4.1.6. Antioxidant capacity	89
4.1.6.1. Scavenging ROS by DPPH	89
4.1.6.2. Antioxidant enzymes	90
4.1.7. Minerals content	92
4.1.8. Yield	95
4.2. Effect of salinity and potassium silicate on barley	
plants	97
4.2.1. Vegetative growth	97
4.2.2. Photosynthetic pigments	101
4.2.3. Leaf water status	103
4.2.4. Osmolytes.	104

4.2.5. Oxidative stress	106
4.2.6. Antioxidant capacity	107
4.2.6.1. Scavenging ROS by DPPH	107
4.2.6.2. Antioxidant enzymes	108
4.2.7. Minerals content	110
4.2.8. Yield	114
5. DISCUSSION	117
5.1. Effect of salinity on sorghum and barley plants	117
5.2. Effect of potassium silicate on sorghum and barley	
plants	118
5.3. Effect of potassium silicate and salinity interactions on	
sorghum and barley plants	119
6. SUMMARY AND CONCLUSION	122
7. REFERENCES	127
ARABIC SUMMARY	

LIST OF TABLES

Table A	Physical properties of the soil in the pots used	Page
	before before cultivation of sorghum and barley	
	plants	71

LIST OF FIGURES

		Page
Fig.1	Effect of salinity and potassium silicate on plant	
	height of sorghum cv. Dorado plants in 2018 and	
	2019 seasons	78
Fig.2	Effect of salinity and potassium silicate on fresh	
	weight of sorghum cv. Dorado plants in 2018 and	
	2019 seasons	79
Fig.3	Effect of salinity and potassium silicate on dry	
	weight of sorghum cv. Dorado plants in 2018 and	
	2019 seasons	80
Fig.4	Effect of salinity and potassium silicate on leaf	
	area/plant of sorghum cv. Dorado plants in 2018	
	and 2019 seasons	81
Fig.5	Effect of salinity and potassium silicate on leaf	
	area index (LAI) of sorghum cv. Dorado plants in	
	2018 and 2019 seasons	81
Fig.6	Effect of salinity and potassium silicate on Chl a	
	in leaves of sorghum cv. Dorado plants in 2018	
	and 2019 seasons	83
Fig.7	Effect of salinity and potassium silicate on Chl b	
	in leaves of sorghum cv. Dorado plants in 2018	
	and 2019 seasons	83
Fig.8	Effect of salinity and potassium silicate on Chl	
	a+b in leaves of sorghum cv. Dorado plants in	
	2018 and 2019 seasons	84
Fig.9	Effect of salinity and potassium silicate on Chl a/b	
	in leaves of sorghum cv. Dorado plants in 2018	

	and 2019 seasons	84
Fig.10	Effect of salinity and potassium silicate on relative	
	water content (RWC) of sorghum cv. Dorado	
	plants in 2018 and 2019 seasons	85
Fig.11	Effect of salinity and potassium silicate on proline	
	content of sorghum cv. Dorado plants in 2018 and	
	2019 seasons	86
Fig.12	Effect of salinity and potassium silicate on sugars	
	content of sorghum cv. Dorado plants in 2018 and	
	2019 seasons	87
Fig.13	Effect of salinity and potassium silicate on H ₂ O ₂	
	content of sorghum cv. Dorado plants in 2018 and	
	2019 seasons	88
Fig.14	Effect of potassium silicate and salinity on	
	antioxidant activity of sorghum cv. Dorado plants	
	in 2018 and 2019 seasons	89
Fig.15	Effect of salinity and potassium silicate on APX	
	activity of sorghum cv. Dorado plants in 2018 and	
	2019 seasons	90
Fig.16	Effect of salinity and potassium silicate on CAT	
	activity of sorghum cv. Dorado plants in 2018 and	
	2019 seasons	91
Fig.17	Effect of salinity and potassium silicate on POX	
	activity of sorghum cv. Dorado plants in 2018 and	
	2019 seasons	91
Fig.18	Effect of salinity and potassium silicate on Na %	
	of sorghum cv. Dorado plants in 2018 and 2019	
	seasons	92

Fig.19	Effect of salinity and potassium silicate on K % of	
	sorghum cv. Dorado plants in 2018 and 2019	
	seasons	93
Fig.20	Effect of salinity and potassium silicate on Na/K	
	ratio of sorghum cv. Dorado plants in 2018 and	
	2019 seasons	94
Fig.21	Effect of salinity and potassium silicate on Si% of	
	sorghum cv. Dorado plants in 2018 and 2019	
	seasons	95
Fig.22	Effect of salinity and potassium silicate on grain	
	yield/plant of sorghum cv. Dorado plants in 2018	
	and 2019 seasons	90
Fig.23	Effect of salinity and potassium silicate on panicle	
	weight of sorghum cv. Dorado plants in 2018 and	
	2019 seasons	96
Fig.24	Effect of salinity and potassium silicate on plant	
	height of barley cv. Giza 123 plants in 2018 and	
	2019 seasons	98
Fig.25	Effect of salinity and potassium silicate on plant	
	fresh weight of barley cv. Giza 123 plants in 2018	
	and 2019 seasons	99
Fig.26	Effect of salinity and potassium silicate on plant	
	dry weight of barley cv. Giza 123 plants in 2018	
	and 2019 seasons	99
Fig.27	Effect of salinity and potassium silicate on leaf	
	area of barley cv. Giza 123 plants in 2018 and	
	2019 seasons	10
Fig.28	Effect of salinity and potassium silicate on Chl a	