

بسم الله الرهكن الرّحيم

$\infty \infty \infty$

تم رفع هذه الرسالة بواسطة /صفاء محمود عبد الشافي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لايوجد

Ain Shams University Faculty of Engineering Structural Engineering Department

Evaluation of Seismic Response of Hybrid Buckling-Restrained Braced Frames

A Thesis Presented by Mohab Anan Abdelhay Elghamry

B.Sc. of Structural Engineering.

Civil Engineering Department - Ain Shams University, 2016

Supervised by:

Prof. Dr. Mohamed Nour El-den

Professor of structural Engineering Structural Department Faculty of Engineering Ain Shams University

Prof. Dr. Hisham A.El-Arabaty

Professor of structural Engineering Structural Department Faculty of Engineering Ain Shams University

Dr. Mohamed Abd ElWahhab

Assistant Professor of structural
Engineering
Structural Department
Faculty of Engineering
Ain Shams University

Ain Shams University Faculty of Engineering Structural Engineering Department

Evaluation of Seismic Response of Hybrid Buckling-Restrained Braced Frames

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science in Structural Engineering

A Thesis Presented by **Mohab Anan Abdelhay Elghamry**

Examiners Committee	Signature
Prof. Dr. Hala Mohamed Gamal Eldin Elkady Professor of Civil Engineering Department	
National Research Center	
Prof. Dr. Ahmed AbdElmanaem Korashy Professor of Structural Engineering	
Structural Engineering Department, Ain Shams University	
Prof. Dr. Mohamed Nour El-Den Saad Fayed Professor of Structural Engineering	
Structural Engineering Department, Ain Shams University	
Prof. Dr. Hisham Ahmed El-Arabaty Professor of Structural Engineering	
Structural Engineering Department, Ain Shams University	

Date: 18/4/2022

Ain Shams University Faculty of Engineering Structural Engineering Department

Evaluation of Seismic Response of Hybrid Buckling-Restrained Braced Frames

A Thesis Presented by **Mohab Anan Abdelhay Elghamry**

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science in Structural Engineering

<u>Supervisors Committee</u>	<u>Signature</u>
Prof. Dr. Mohamed Nour El-Den Saad Fayed Professor of Structural Engineering	
Structural Engineering Department, Ain Shams University	
Prof. Dr. Hisham Ahmed El-Arabaty Professor of Structural Engineering	
Structural Engineering Department, Ain Shams University	
Dr. Mohamed Ahmed Abd ElWahhab Assistant Professor of Structural Engineering Structural Engineering Department, Ain Shams University	
Postgraduate Studies	
Authorization stamp: The thesis is authorized at /	/ 2022
College Board Approval / / 2022 University 1 / / 2022	Board Approval

Date: 18/4/2022

1 CURRICULUM VITAE

Name Mohab Anan Abdelhay Elghamry

Date of Birth 17, April 1993

Place of Birth Egypt

Scientific degree B.Sc. of Structural Engineering, Faculty of

Engineering, Ain Shams University, 2016

Current Job Demonstrator of Structural Analysis,

Structural Engineering Department, Faculty

of Engineering, Ain Shams University

2 **STATEMENT**

This thesis is submitted to Ain Shams University for the degree of M.Sc. in Civil Engineering.

The work included in this thesis was carried out by the author at the Department of Structural Engineering, Faculty of Engineering, Ain Shams University, Cairo, Egypt.

No part of this thesis has been submitted for a degree or a qualification at any other University or Institution.

Name: Mohab Anan Abdelhay Elghamry

Signature:

Date: 18 / 4 / 2022

Thesis Summary

This research investigates the seismic response of buckling restrained braces (BRB) in comparison with hybrid buckling restrained braces (HBRB) under near fault earthquakes known with its extensive structural damages because of the velocity pulses and high frequency contents. Both systems use a bracing that consists of a steel core with a buckling restraining component such as a mortar filled steel tube which leads to a good energy dissipation behavior. The problem of the BRB is the residual displacement after earthquakes because of the yielding of the braces. The HBRB uses a combination of low yield point steel with high strain hardening and high-performance steel which counteracts the low post yield stiffness of BRB. A complex non-linear finite element model (FEM) was used to simulate the real behavior of structures under the combination of both vertical and lateral loads

A parametric study was performed on 3 buildings with different heights -5-, 7-, and 9-story- and different bracing compositions using standard and 2 hybrid combinations. Each building was designed and subjected to pushover analysis and incremental dynamic time history analysis. Time history analysis was performed under 7 near fault ground motions with velocity pulses after scaling and rotating them in fault normal and fault parallel directions.

Seismic code factors such as response modification factor and over strength factor were computed based on the analysis results and compared with design codes. Another comparison was made between the standard bracing and the two hybrid bracing compositions in regard of the max roof drift, residual displacement and inter story drift ratio. Finally, the difference between the effect of fault normal and fault parallel on the structure was illustrated. Based on these comparisons number of considerations were recommended to be taken in dealing with BRB and HBRB and generally for building near active faults.

KEYWORDS: Hybrid buckling restrained brace, Near fault, Nonlinear analysis, Residual displacement.

3 ACKNOWLEDGMENT

First and foremost, thanks to GOD for his many graces and blessings.

I wish to express my deepest gratitude and appreciation to Prof. Hisham El-Arabaty, Prof. Mohamed Nour Eldin, and Dr. Mohamed Abdel-Wahab for their patience, help, guidance, useful suggestions, dedication, encouragement, and kind supervision. Their fruitful comments and valuable advice throughout this research till its completion is gratefully acknowledged and sincerely appreciated.

Most important, my deepest thanks and love for my parents, sister, and friends for constant and everlasting support which is the reason for being able to finish this research.

Table of Content

Contents

COLLE	CIICO		
1 C	URRICU	JLUM VITAE	4
2 ST	ГАТЕМІ	ENT	5
3 A	CKNOW	/LEDGMENT	7
Table o	of Conter	nt	8
List of	Figures.		10
List of	Tables		13
Chapte	r 1		1
Introdu	iction		1
1.1	General		2
1.2	Objectiv	e of the research	3
1.3	Layout o	f the thesis	3
Chapte	er (2)		6
Literati	ure Revie	ew	6
Chapte	er (3)		26
Buildir	ng descrij	ption and ground motions	26
3.1	Building	g description	27
3.	1.1 [Design data	27
3.	1.2	Design basis	29
3.	1.3 (Comparison conditions	37
3.2	Ground	motions	38
3.	2.1	Scaling methods	40
3.	2.2 F	Rotating ground motions:	45
Chapte	er (4)		47
Analys	sis Model	l	47
4.1	Introdu	ction	48
4.2	Model	overview	48
4.3	Geome	tric non-linearity	49
4.4	Materia	al properties	51

4.	4.1	Steel02 material	51
4.	4.2	Steel MPF	52
4.	4.3	Fatigue material	53
4.5	Raylei	gh damping	54
4.6	Plastic	city model	56
Chapte	r (5)		60
Verific	ation of	f the Analytical Model	60
5.1	Introd	uction	61
5.2	Case 1	L: Modal analysis	63
5.3	Case 2	2: Pushover analysis	64
Chapte	r 6		68
Non-lii	near pu	shover analysis	68
6.1	Introd	uction	69
6.2	Moda	l analysis and force distribution	70
6.3	Analys	sis results	74
6.4	Seism	ic performance factors	76
6.5	Discus	ssion of the results	78
Chapte	r 7		80
Dynam	ic time	history analysis	80
7.1	Introd	uction	81
7.2	Analys	sis results	82
7.3	Discus	ssion of the results	97
Chapte	r 8		99
Summa	ary and	Conclusion	99
8.1	Summ	nary	100
8.2	Conclu	usion	100
8.3	Sugge	stion for future work	102
REFER	FNCF	\$	104

List of Figures

Figure 2-1 Components of BRB [4]	8
Figure 2-2 Behavior of BRB Vs conventional braces [5]	8
Figure 2-3 Elevation of the studied frames [6]	9
Figure 2-4 Investigated frame by Karimi et al. [8]	. 10
Figure 2-5 40-story building investigated by Jones and Zareian [9]	. 11
Figure 2-6 Lab test carried out by Fahnestock et al. [10]	. 12
Figure 2-7 Six story frame studied by Qiu and Zhu [11]	. 13
Figure 2-8 The three tested frames in the experimental study by Chou et a	l.
[13]	. 15
Figure 2-9 Composition of HBRBs [14]	. 16
Figure 2-10 Plan and elevation of the utilized building by Alborzi et al. [17]	18
Figure 2-11 Plan view of the examined building by Hoveidae [19]	. 20
Figure 2-12 Velocity pulse in ground motion time history	. 21
Figure 2-13 3-, 4-, 9-, and 12-story frames studied by Baghbanijavid et al.	
[25]	. 23
Figure 2-14 9-story building studied by Ghowsi and Sahoo [26]	. 24
Figure 3-1 Elevation and typical plan of the studied building	. 28
Figure 3-2 The procedure used in designing beams and columns [27]	. 34
Figure 3-3 Beams and columns naming method	. 35
Figure 3-4 The single record unscaled and the 5% damped response	
spectrum	. 39
Figure 3-5 The FP scaled average vs design spectrum, the final scaled average	age
vs design spectrum, and the single record scaled vs design spectrum	
respectively for 5-story building	. 43
Figure 3-6 The FP scaled average vs design spectrum, the final scaled average	age
vs design spectrum, and the single record scaled vs design spectrum	
respectively for 7-story building	. 44
Figure 3-7 The FP scaled average vs design spectrum, the final scaled average	age
vs design spectrum, and the single record scaled vs design spectrum	
respectively for 9-story building	. 45
Figure 4-1 implementation of second-order effects	
Figure 4-2 Hysteretic behavior of steel02 material [36]	
Figure 4-3 concentrated plasticity models [41]	
Figure 4-4 distributed plasticity models [41]	
Figure 5-1 five-story building used for verification	
Figure 5-2 Time periods of the verification model	
Figure 5-3 Time periods of the verification model using hybrid bracing	. 64

Figure 5-4 screenshot of the verification model	66
Figure 5-5 Pushover curves by Atlayan and Charney [14]	66
Figure 5-6 Pushover curve for standard BRB by author	67
Figure 5-7 Pushover curve for HBRB by author	67
Figure 6-1 Deformed shape of the fundamental mode for the 5-story building	_
Figure 6-2 Deformed shape of the fundamental mode for the 7-story buildi	ng
Figure 6-3 Deformed shape of the fundamental mode for the 9-story buildi	ng
Figure 6-4 Pushover curves for the 5-story building	
Figure 6-5 Pushover curves for the 7-story building	
Figure 6-6 Pushover curves for the 9-story building	
Figure 6-7 Idealized pushover curve [43]	
Figure 7-1 Roof displacement for the 5-story building subjected to	
Tottori_japan earthquake	83
Figure 7-2 Roof displacement for the 7-story building subjected to	
Tottori_japan earthquake	83
Figure 7-3 Roof displacement for the 9-story building subjected to	
Tottori_japan earthquake	84
Figure 7-4 Roof displacement for the 5-story building subjected to	
Chi_Chi_Taiwan earthquake	84
Figure 7-5 Roof displacement for the 7-story building subjected to	
Chi_Chi_Taiwan earthquake	85
Figure 7-6 Roof displacement for the 9-story building subjected to	
Chi_Chi_Taiwan earthquake	85
Figure 7-7 Roof displacement for the 5-story building subjected to Bam_Ira	n
earthquake	86
Figure 7-8 Roof displacement for the 7-story building subjected to Bam_Ira	n
earthquake	
Figure 7-9 Roof displacement for the 9-story building subjected to Bam_Ira	n
earthquake	87
Figure 7-10 Comparison between residual displacement % for 5-story	
building	88
Figure 7-11 Comparison between residual displacement % for 7-story	
building	88
Figure 7-12 Comparison between residual displacement % for 9-story	
building	89
Figure 7-13 Comparison between max roof displacement% for 5-story	
building for fault normal direction	89

Figure 7-14 Comparison between max roof displacement% for 5-story	
building for fault parallel direction	90
Figure 7-15 Comparison between max roof displacement% for 7-story	
building for fault normal direction	90
Figure 7-16 Comparison between max roof displacement% for 7-story	
building for fault parallel direction	91
Figure 7-17 Comparison between max roof displacement% for 9-story	
building for fault normal direction	91
Figure 7-18 Comparison between max roof displacement% for 9-story	
building for fault parallel direction	92
Figure 7-19 Comparison between max roof displacement% for 5-story	
building under fault normal and parallel directions respectively	92
Figure 7-20 Comparison between max roof displacement% for 7-story	
building under fault normal and parallel directions respectively	93
Figure 7-21 Comparison between max roof displacement% for 9-story	
building under fault normal and parallel directions respectively	93
Figure 7-22 Max IDR % for the 5-story building	94
Figure 7-23 Residual IDR % for the 5-story building	94
Figure 7-24 Max IDR % for the 7-story building	95
Figure 7-25 Residual IDR % for the 7-story building	95
Figure 7-26 Max IDR % for the 9-story building	96
Figure 7-27 Residual IDR % for the 9-story building	96

List of Tables

Table 3-1 Seismic design data	28
Table 3-2 Building information	29
Table 3-3 Base shear for different buildings for one bay of lateral framing	30
Table 3-4 Base shear distribution for 5-story frame	30
Table 3-5 Base shear distribution for 7-story frame	31
Table 3-6 Base shear distribution for 9-story frame	31
Table 3-7 Material properties	34
Table 3-8 Details of member sizes	35
Table 3-9 Standard and Hybrid BRB composition	37
Table 3-10 Characteristics of the chosen seismic records	38
Table 3-11 Scaling factors for 5-story building	42
Table 3-12 Scaling factors for 7-story building	42
Table 3-13 Scaling factors for 9-story building	42
Table 4-1 fundamental and third modes and damping factors for the three	
different buildings	55
Table 5-1 Bracing area and beam size for verification model	62
Table 5-2 Exterior and interior column sections	62
Table 5-3 Material properties	
Table 5-4 Hybrid combination	63
Table 5-5 Eigen vectors and distribution of horizontal forces for verification	า
model	65
Table 6-1 the time periods in seconds for the shown modes	70
Table 6-2 Eigenvectors and force distribution for the 5-story building	71
Table 6-3 Eigenvectors and force distribution for the 7-story building	72
Table 6-4 Eigenvectors and force distribution for the 9-story building	73
Table 6-5 Seismic performance factors	77

Chapter 1

Introduction