

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / مني مغربي أحمد

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

1992

1992

ملاحظات: لا يوجد

Autophagy and Rapamycin in Preventing Experimental Diabetes Mellitus Complications

A Chesis

Submitted for the Partial Fulfillment of Philosophy Degree in Pharmaceutical Sciences (Biochemistry)

By

Khaled Mahmoud Ali Gouda

Assistant Lecturer of Biochemistry, Faculty of Pharmacy, Modern University for Technology and Information. Master Degree in Pharmaceutical Sciences (Biochemistry), AL-Azhar University, 2015.

Under Supervision of

Prof. Dr. Hala Osman El-Mesallamy

Professor of Biochemistry, Faculty of Pharmacy, Ain Shams University, Dean of Faculty of Pharmacy, Sinai University (Kantara).

Prof. Dr. Ahmed Mohamed Mansour

Professor of Pharmacology, Faculty of Pharmacy (Boys), AL-Azhar University.

Dr. Nesreen Nabil Omar

Associate Professor of Biochemistry, Acting Head of Biochemistry Department, Faculty of Pharmacy, Modern University for Technology and Information.

Dr. Sherihan Galal Abdel Hamid

Lecturer of Biochemistry, Faculty of Pharmacy, Ain-Shams University.

Biochemistry Department Faculty of Pharmacy Ain Shams University 2022

أعوز بالله من الشيطان الرجيم

بِشِ مِٱللَّهِٱلرَّحْمَزِٱلرَّحِي مِ

﴿فتعالى الله الملك الحق ولا تعجل بالقرآن من قبل

أن يقضى إليك وحيه وقل رب زدني علما ﴾

سورة طه ۱۱۶

Acknowledgment

First of all I thank "Allah" for granting me the power to accomplish this work.

I would like to express my deepest thanks to *Prof. Dr. Hala Osman El- Mesallamy*, Professor of Biochemistry, Faculty of
Pharmacy, Ain Shams University and Dean of Faculty of
Pharmacy, Sinai University, for her valuable scientific supervision,
constructive advice and continuous guidance throughout the work.

I would also like to thank *Prof. Dr. Ahmed Mohamed Mansour*, **Professor of Pharmacology, Faculty of Pharmacy (Boys), AL-Azhar University,** for his active participation and great support during the study.

My deepest gratitude and appreciation are expressed to *Associate Prof. Nesreen Nabil Omar*, Acting Head of Biochemistry **Department, Faculty of Pharmacy, MTI University**, for her keen, continuous, enthusiastic support patient guidance, and enlightening advice throughout the whole work.

I owe my deepest sincere gratitude to *Dr. Sherihan Galal Abdel Hamid*, Lecturer of Biochemistry, Faculty of Pharmacy, Ain Shams University, for her faithful encouragement, invaluable suggestion and advice throughout the work.

Finally, my deepest everlasting thanks and appreciation are for *my family*, for their continuous support and encouragement during the whole thesis tiring period.

List of Contents

Li	st of Abbreviations	i
	st of Tables	
Li	st of Figures	
1.		
2.	Literature Review	4
	2.1. Diabetes Mellitus and Its Prevalence	4
	2.2. Classification	5
	2.3. Complications	6
	2.3.1. Microvascular Complications	8
	2.3.1.1. Diabetic Neuropathy	8
	2.3.1.2. Diabetic Retinopathy (DR)	11
	2.3.1.3. Diabetic Nephropathy (DN)	12
	2.3.2. Macrovascular Complications	
	2.3.2.1. Atherosclerosis	16
	2.3.2.2. Coronary Heart Disease and Stroke	17
	2.4. Management	
	2.4.1. Management of T1DM	13
	2.4.2. Management of T2DM	
	2.5 Autophagy	
	2.5.1. Diseases Associated with Abnormal Autophagy	
	2.5.2. Types of Autophagy	
	2.5.2.1. Macroautophagy	
	2.5.2.2. Microautophagy	
	2.5.2.3. Chaperon Mediated Autophagy (CMA)	
	2.5.3. Molecular Machinery of Autophagy	
	2.5.4. Induction of Autophagy	
	2.5.5. Autophagy Role in The Maintenance of Normal	
	Islet Structure and Function	
	2.5.6. Autophagy in Diabetic β Cells	
	2.5.7. Autophagy and Oxidative Stress in β Cells	
	2.5.8. Crinophagy in β Cells	
	2.6. Rapamycin	33
	2.6.1. Mechanism	33
	2.6.2. Uses	35

2.6.2.1Rapamycin a	nd Cancer	36
	and Neurodegenerative Diseases	
	Effect on Longevity	
	and Metabolic Diseases	
2.6.2.5. Rapamycin	and Immune System	39
- · · · · · · · · · · · · · · · · · · ·	Effect on Lymphangioleiomyomatosis	
(LAM) and	Tuberous Sclerosis Complex (TSC)	39
2.6.2.7. Rapamycin	and COVID-19 Pandemic	39
2.6.3. Rapalogs		40
2.7. Fasting		42
2.8. Microtubule-As	ssociated Protein 1A/1B-Light Chain	
` ,		46
_	g Cassette Subfamily B Member	40
,		
•		
	ethods	
-	esign	
-		
• •		
-	cin (STZ)	
	OM	
-	f STZ	
	ion	
•	ection	
-	ation	
	gy	
=	eters	
	on of Fasting Blood Glucose Levels	
	on of Fasting Serum Insulin Levels	61
	ion of Serum Total Cholesterol (TC)	~ ~
3.3.7.4. Determinati	on of Serum HDL-C Levels	67

	3.3.7.5. Determination of Serum LDL-C Levels	68
	3.3.7.6. Determination of Serum Triacylglycerol (TAG)	
	Levels	69
	3.3.7.7. Determination of Serum Urea Levels	71
	3.3.7.8. Determination of Serum Creatinine Levels	72
	3.3.7.9. Determination of Serum Albumin Levels	74
	3.3.7.10. Determination of Urine Albumin Levels	75
	3.3.7.11. Determination of Serum Bilirubin (Total And	
	Direct) Levels	77
	3.3.7.12. Determination of Serum Uric Acid Levels	79
	3.3.8. Tissue parameters	81
	3.3.8.1Determination of Pancreatic Malondialdehyde	
	(MDA) Levels	81
	3.3.8.2. Determination of Pancreatic Catalase (CAT)	0.2
	Level	83
	3.3.8.3. Determination of Pancreatic and Renal LC3B-II	95
	Protein	05
	Protein	88
	3.3.8.5. Determination of Pancreatic and Renal ABCB1	
	Protein	91
	3.3.9. Transmission Electron Microscope (TEM)	
	3.4. Statistical Analysis	
4.	Results	
	4.1. Animals Weights	99
	4.2. Diabetes Mellitus (DM) Markers	
	4.3. Lipid Profile	
	4.4. Kidney Function Tests	103
	4.5. Nucleic Acid Integrity	
	4.6. Liver Function Tests	
	4.7. Determination of Pancreatic Oxidative Stress	
	Measures	106
	4.8. Determination of Cellular Autophagy	107
	4.9. Determination of Cellular Apoptosis	109

	4.10.	Cellular	Permeability-glycoprotein;	ABCB1		
		Estimatio	n		110	
	4.11. T	Transmission	n electron microscope (TEM).		112	
	4.12. F	- Hematoxylir	and Eosin Stain (H&E)		117	
5.	Disc	ussion		•••••	118	
6.	Sum	mary and	Conclusion		135	
7.	Reco	ommendati	ons		140	
8.	Refe	erences		•••••	141	
ر سے	ملخص الع	اله			1	

List of Abbreviations

Abbreviation	Definition
ABCB1	Adenosine triphosphate binding cassette subfamily b member 1
AGEs	Advanced glycation end products
Akt	protein kinase B
Ambra1	Autophagy and beclin 1 regulator 1
AMPK	Adenosine monophosphate-activated protein kinase
Atg	Autophagy related gene or protein
ВНВ	β-hydroxybutyrate
CMA	Chaperone-mediated autophagy
CRP	C-reactive protein
DFCP1	Zinc finger FYVE (Fab 1, yotB, vesicle transport protein and early endosome antigen 1) domain-containing protein 1
DM	Diabetes mellitus
DN	Diabetic nephropathy
DR	Diabetic retinopathy
ER	Endoplasmic reticulum
ESRD	End-stage renal disease
FBG	Fasting blood glucose
FDA	The Food and Drug Administration
FKBP-12	Immunophilin 12- kda FK506- binding protein
F-STZ	Fasting-Streptozotocin
GBM	Glomerular basement membrane
GDM	Gestational diabetes mellitus
GFR	Glomerular filtration rate
GSH	Reduced glutathione
H&E	Hematoxylin and eosin stain
HDL-C	High density lipoprotein cholesterol
Hsc70	Heat-shock cognate 70
IR	Insulin resistance
LAM	Lymphangioleiomyomatosis
LC3	Microtubule-associated protein 1A/1B-light chain 3
LDL-C	Low density lipoprotein cholesterol
LKB1	Liver kinase B1
LPL	lipoprotein lipase
MDA	Malondialdehyde
MDR1	Multidrug resistance protein 1

Abbreviation	Definition
MS	Mesangial sclerosis
mTOR	Mammalian target of Rapamycin
mTORC1	Mammalian target of Rapamycin complex 1
mTORC2	Mammalian target of Rapamycin complex 2
NADPH	Nicotinamide adenine dinucleotide phosphate
PAG	Polyacrylamide gel electrophoresis
PI3K	Phosphatidylinositol 3-kinases
PI3P	phosphatidylinositol 3-phosphate
PKC	Protein kinase C
POD	Peroxidase
PTEN	Phosphatase and tensin homolog
PVDF	Polyvinylidenene difluoride
Ras	Rat sarcoma virus
RIPA	Radioimmunoprecipitation assay
ROS	Reactive oxygen species
R-STZ	Rapamycin-treated Streptozotocin
STZ	Streptozotocin
T1DM	Type 1 diabetes mellitus
T2DM	Type 2 diabetes mellitus
TAG	Triacyglycerol
TC	Total cholesterol
TEM	Transmission electron microscope
TSC	Tuberous sclerosis complex
ULK1/2	Unc-51 like autophagy activating kinase
UNC-51	Serine/threonine-protein kinase
Vps34	Phosphatidylinositol 3-kinase
WB	Western blot
WIPI2	β-propeller repeat domain phosphoinositide-interacting protein 2

List of Tables

Table no.	Title	Page
1	Diabetic neuropathies.	10
2	Stages of Diabetic Nephropathy (DN).	15
3	Mean values of weights at the first day and after 14 days of the experiment.	99
4	Lipids profile of control and diabetic rats of STZ-treated groups; (STZ, R-STZ and F-STZ).	103
5	Kidney function tests of control and diabetic rats of STZ-treated groups; (STZ, R-STZ and F-STZ).	104
6	Liver function tests of control and diabetic rats of STZ-treated groups; (STZ, R-STZ and F-STZ).	105

List of Figures

Figure no.	Title	
1	Polyol pathway.	8
2	Sites of action of pharmacological therapies for the treatment of type 2 diabetes.	20
3	Types of autophagy in mammalian cells.	24
4	Molecular pathways of autophagy.	26
5	Signaling pathways regulating autophagy and sites of action of some agents.	28
6	Crinophagy pathway in pancreatic β-cells.	33
7	Rapamycin action with mTORC1 and mTORC2.	34
8	Effects of Rapamycin in various diseases.	36
9	Structures of Rapalogs.	41
10	Beneficial effects of fasting on various human body organs.	44
11	Signaling pathways affected by fasting.	46
12	Serum insulin standard curve.	65
13	Standard calibration curve of MDA.	83
14	Blood glucose estimation.	101
15	Pancreatic oxidative stress markers in all studied groups.	106
16	Cellular autophagy marker LC3B protein level in pancreatic and renal tissue samples of the study groups.	108
17	Cellular apoptosis marker p53 protein level in pancreatic and renal tissue samples of the study groups.	109
18	Cellular permeability-glycoprotein; ABCB1 level in pancreatic and renal tissue samples of the study groups.	111
19	Effect of Rapamycin and fasting on autophagosome formation in kidney tissue of rats after administration of STZ as viewed by TEM.	112
20	Selected micrographs by TEM of renal cells in the STZ group.	114
21	Selected micrographs by TEM of renal cells in the R-STZ group.	115
22	Selected micrographs by TEM of renal cells in the F-STZ group.	116
23	Renal tissues as stained by H&E (scale bar, 100 µm) for STZ rats after administration of Rapamycin or after fasting.	117

1. Introduction and Aim of the Work

Diabetes mellitus (DM) is considered a global emergency. Around 537 million people worldwide suffer from DM, and 1.6 million die annually secondary to diabetes (*IDF*, 2021). It is predicted that 643 million people to suffer from DM by 2030 and to 783 by 2045. (*WHO*, 2020; Patel et al., 2022).

Many pathological factors are involved in the prognosis of DM. However, pancreatic β cell dysfunction is considered the core of DM and its complications (*American Diabetes Association*, 2014; *Antonetti et al.*, 2021).

Maintenance of pancreatic β cells could be achieved through two strategies. First, increasing its reproductive capacity. However, the potential risk of cancer emergence may accompany this strategy. Second, enhancing the defense power of the β cells against destructive matters by inducing autophagy. Nevertheless, the subsequent risk of programmed cell death might also arise. Consequently, an optimal induction of autophagy is the key to gain the benefits of this vital biological process (*Stützer et al.*, 2012; *Vetere et al.*, 2014; *Eshraghi et al.*, 2022). We aimed in this study to prolong the life span of β cells through induction of

autophagy in an appropriate way. Autophagy has been demonstrated to have a beneficial effect on DM-induced nephropathy (*Khodir et al., 2020*).

Rapamycin, an immunosuppressant mammalian target of Rapamycin (mTOR) inhibitor drug was shown to stimulate β -cell autophagy, but its effects on preventing or ameliorating the diabetic nephropathy (DN) is unclear, an effect worth to be studied.

Research on fasting is gaining attraction based on recent studies that show its role in many adaptive cellular responses such as the reduction of oxidative damage and inflammation (Visioli et al., 2022). Fasting forces healthy cells to enter a slow division and highly protected mode that protects them against oxidative stress which is considered a key factor in developing pancreatic insufficiency (Nencioni et al., 2018). As fasting is now an attractive protective strategy, its effect will be compared to Rapamycin effects on pancreatic and renal cells.

Induction of autophagy in pancreatic β cells is of an appreciated importance, as it results in indirect activation of CAT biosynthesis that is normally expressed in low level in

the pancreatic β cells (Lenzen et al., 1996; Pearson et al., 2021).

Accordingly, the ultimate aim of this study was to:

- 1) Explore the real outcome of autophagy in developing or preventing DM complications, in particular DN.
- 2) Estimate the prophylactic importance of Rapamycin, as a standard inducer for the autophagy, in preventing progression of DN.
- 3) Explore the physiological importance of fasting towards DM and pancreatic β cells.
- 4) Compare the effect of Rapamycin/ fasting in enhancing or worsening DM and its complications.