

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / حسام الدين محمد مغربي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

ملاحظات: لا يوجد

Development of multi-residue methods for analysis of pesticide in beeswax and honey using tandem mass spectrometry techniques

Thesis Submitted by

Muhammad Mahmoud Hassan Mahmoud Issa

B.Sc. (Chemistry) 2008

M.Sc. (Chemistry) 2018

For the requirement of Ph.D.Degree of Science in Chemistry

Under Supervision of

Prof. Dr. Mostafa Mohammed Hassan KhalilProfessor of Inorganic Chemistry, Faculty of Science,
Ain Shams University.

Prof. Dr. Eman Hamed Sayed IsmailProfessor of Inorganic and Analytical Chemistry,
Faculty of Science, Ain Shams University.

Prof. Dr. Ashraf Mahmoud Hassan El-MarsafyChief Researcher, Central Lab of Residue Analysis of
Pesticides and Heavy Metals in Food, A. R. C.

Dr. Sherif Mohamed Taha Mohamed

Associate Professor, Central Lab of Residue Analysis of Pesticides and Heavy Metals in Food, A. R. C.

To

Department of Chemistry
Faculty of Science, Ain Shams University
2022

Thesis Advisors

Approved

Development of multi-residue methods for analysis of pesticide in beeswax and honey using tandem mass spectrometry techniques

Muhammad Mahmoud Hassan Mahmoud Issa

Prof. Dr. Mostafa Mohammed Hassan KhalilProfessor of Inorganic Chemistry, Faculty of Science, Ain Shams University.

Prof. Dr. Eman Hamed Sayed IsmailProfessor of Inorganic and Analytical Chemistry, Faculty of Science, Ain Shams University.

Prof. Dr. Ashraf Mahmoud Hassan El-Marsafy Chief Researcher, Central Lab of Residue Analysis of Pesticides and Heavy Metals in Food, A. R. C.

Dr. Sherif Mohamed Taha Mohamed

Associate Professor, Central Lab of Residue Analysis of Pesticides and Heavy Metals in Food, A. R. C.

Head of Chemistry Department

Prof. Dr. Ayman Ayoub Abdel-Shafi

Acknowledgment

The author express his thanks to graceful and merciful **God** for helping him in making this manuscript comes to the truth.

The author wishes to express his deep gratitude and thanks to **Prof. Dr. Mostafa Mohamed Hassan Khalil**, Professor of Inorganic and Analytical chemistry, Faculty of Science, Ain Shams University for his supervision, continues encouragement and valuable comments throughout the work and for his revising the manuscript.

The author also wishes to express his deep gratitude and thanks to **Prof. Dr. Eman Hamed Sayed Ismail**, Professor of Inorganic and Analytical chemistry, Faculty of Science, Ain Shams University for her supervision, continues encouragement and valuable comments throughout the work and for her revising the manuscript.

The author also wishes to express deep thanks to Prof. Dr. Ashraf Mahmoud Hassan El Marsafy, Chief Researcher, Central Lab of Residue Analysis of Pesticides and Heavy Metals in Food, Agricultural Research Center, Ministry of Agriculture and Land Reclamation, for his great effort, suggestion of the subject of this theses, and assistance for his kind help and assistance through the course of the work and for his revising the manuscript. The author also wishes to express deep thanks to Dr. Sherif Mohamed Taha Mohamed, Associate Professor, Central Lab of Residue Analysis of Pesticides and Heavy Metals in Food, A. R. C., for his great effort, suggestion of the subject (problem) of this theses, and assistance for

کلیه العلو م — قسم الکیمیاء

his kind help and assistance through the course of the work and for his revising the manuscript.

Thanks and appreciation to all the staff members and technicians of Central Laboratory of Residue Analysis of Pesticides and Heavy Metals in Foods, Agricultural Research Center, Ministry of Agriculture and Land Reclamation.

My special thanks to my father, my mother, my brothers, my sisters, my wife and my kids for giving me inspiration, confidence and patience throughout the period of investigation.

Muhammad Mahmoud Hassan Mahmoud Issa

ABSTRACT

ABSTRACT

Name: Muhammad Mahmoud Hassan Mahmoud Issa

Title of the thesis: Development of multi-residue methods for analysis of pesticide in beeswax and honey using tandem mass spectrometry techniques.

Position: Researcher Assistant

Degree: Ph.D., Faculty of science, Ain Shams University.

The rising potential for honey bees to be exposed to complex mixes of pesticides is one of the possibilities that may help explain the loss of honey bee colonies around the world. Two multi-residue methods based on distinct extraction and clean up protocols were developed and validated for the measurement of 373 pesticides in beeswax (including 306 pesticides using LC-MS/ MS and 160 pesticides using GC-MS/ MS) and 313 pesticides using LC-MS/ MS to better understand this phenomenon. For beeswax, a mixture of acetonitrile and ethyl acetate (1:3, v/v) was used to extract pesticide residues from beeswax. This combination of solvents not only allows the melting of beeswax samples at a lower temperature than when alone acetonitrile is used, but it also creates a one-phase solution. The beeswax extract was directly injected into both GC-MS/MS and into LC-MS/MS. On the other hand, a mixture of acetonitrile and ethyl acetate (1:1, v/v) was used to extract pesticide residues from honey followed by cleanup using a dispersive solid-phase extraction (d-SPE) with primary second amine (PSA) then directed to LC-MS/ MS for analysis. The developed methods were validated according to SANTE/ 11813/2017 European Union guidelines. For all studied compounds, it was found that the limit of quantifications (LOQ) ranged from (20 to 100) µg/Kg and (4 to 20) µg/Kg for beeswax and honey, respectively. For beeswax, there are 265 and 139 pesticides of LOQ equal 20

µg/kg using LC-MS/MS and GC-MS/MS, respectively. On the other hand, there are 270 pesticides having LOQ equal 4 µg/kg using LC-MS/MS in honey. The developed assay was linear over concentration range of 2-100µg/L, with correlation coefficient of more than 0.995 in both beeswax and honey. Most of the studied pesticides have acceptable recovery between 75 and 120% with good reproducibility (most of them have RSD below 12%) for both beeswax and honey. Finally, the developed methods were successfully applied for the analysis of real beeswax and honey samples. Chlorpyrifos, malathion, and cypermethrin were detected in all analyzed beeswax samples, indicting uncontrolled pesticide practices around beehives. Tau-fluvalinate, the commonly used insecticides/acaricides, was detected in 60% of the tested samples of beeswax at concentration range between <LOO-1730 µg/kg. On the other hand, results revealed that only two honey</p> samples out of the fifteen analyzed samples was contaminated with DMF at concentration levels of 20 and 26 µg/kg. This wide scope assay protocol is applicable for monitoring pesticide residues in honey and beeswax by national regulatory authorities and accredited labs; that should help ensure safety of such widely used products.

Keywords: Beeswax, Honey, Pesticide residues, Analytical method, LC-MS/MS, GC-MS/MS, Egypt.

Supervisors' approval:

• Prof. Dr. Mostafa Mohammed Hassan Khalil

Professor of Inorganic Chemistry, Faculty of Science, Ain Shams University.

• Prof. Dr. Eman Hamed Sayed Ismail

Professor of Inorganic and Analytical Chemistry, Faculty of Science, Ain Shams University.

• Prof. Dr. Ashraf Mahmoud Hassan El-Marsafy

Chief Researcher, Central Lab of Residue Analysis of Pesticides and Heavy Metals in Food, A. R. C.

• Dr. Sherif Mohamed Taha Mohamed

Associate Professor, Central Lab of Residue Analysis of Pesticides and Heavy Metals in Food, A. R. C.

Head of Chemistry Department

Prof. Dr. Ayman Ayoub Abdel-Shafi

AIM OF STUDY

- ✓ Using a proper solvent (or mixture of solvents) that not only enable analysis of higher number of pesticides but also enables direct injection to LC MS/ MS and GC MS/ MS.
- ✓ Decreasing the co-extracted matrix components for the developed method by applying different clean up conditions, to protect the used analytical instruments.
- ✓ Development a reliable method for pesticides residue analysis in beeswax that enable the detection of a high number of pesticides (about 180 pesticides using GC MS/ MS and about 300 pesticides using LC MS/ MS).
- ✓ Development a reliable method for pesticides residue analysis in honey that enables the detection of high number of pesticide about 300 pesticides using LC MS/ MS.
- ✓ The developed method will be validated through determination the following parameters:
 - Linearity, which will be determined by analysis a set of calibration points that were prepared in beeswax and honey matrices.
 - Intera-day precision, which will be determined through analysis of five repeated fortified beeswax and honey samples at different spiking concentrations in the same day.

- Inter-day precision, which will be determined through analysis of five repeated fortified beeswax and honey samples at a specified spiking concentration in repeated five days.
- Matrix effects calculations, a set of calibration points were prepared in pure solvent for LC MS/ MS and in an alternative sample extract for GC MS/ MS together with that prepared in beeswax and honey extracts will be used for calculation of matrix effects.
- ✓ Applying the developed method for analysis of different collected real samples (beeswax and honey).