

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / مني مغربي أحمد

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

1992

1992

ملاحظات: لا يوجد

The Combined Effect of Platelet-Rich Plasma and Bone Marrow-Derived Mesenchymal Stem Cells in Regeneration of Irradiated Submandibular Salivary Gland (An Experimental Animal Study)

Thesis Submitted to Faculty of Dentistry, Ain Shams
University in partial fulfillment of the requirements for Degree
of Doctor of Philosophy in Oral Pathology

By

Esraa Ali Mahmoud Bersy

Assistant Lecturer in Oral Pathology Department, Faculty of Dentistry, Ain Shams University B.D.S (Faculty of Dentistry, Ain Shams University) 2010 M.S.D (Faculty of Dentistry, Ain Shams University) 2019 (esraa.m@dent.asu.edu.eg 01116992779)

Supervisors

Dr. Houry Moustafa Baghdadi

Professor of Oral Pathology Head of Oral Pathology Department Faculty of Dentistry-Ain Shams University

Dr. Shaimaa Eliwa Ghazy

Assistant Professor of Oral Pathology Faculty of Dentistry-Ain Shams University

> Faculty of Dentistry Ain Shams University 2022

Acknowledgment

I would like to express my deep and sincere gratitude to my research supervisor, **Dr. Houry Moustafa Baghdadi**, Professor and Head of Oral Pathology Department, Faculty of Dentistry, Ain Shams University, for her invaluable guidance, constant encouragement, kind support and advice at all times. It was a great privilege and honor to work under her supervision.

I deeply appreciate and would like to thank **Dr. Shaimaa Eliwa Ghazy**, Assistant Professor of Oral Pathology Department, Faculty of Dentistry, Ain Shams University, who provided me with her immense knowledge, valuable assistance, great experience, constant motivation and precious time to accomplish this work. I am extremely grateful for what she had offered me.

Grateful thanks are extended to **Dr. Rabab Hassan Ali,** Assistant Professor of Oral Biology, Faculty of Dentistry, Ain Shams University, who freely gave me her time, effort and experience whenever needed.

My thanks extend also to all those who gave me a hand during this work.

Dedication

To my parents, the symbol of love and giving, who have showered me with prayers,

To my father and mother in law who I appreciate their support,

To my beloved husband, Ahmad, who had never left my side,

To my dear sons who are the best gifts I have ever had,

Table of Contents

Lis	st of Abbreviations	i
Lis	st of Figures	v
Lis	st of Plates	ix
Lis	st of Tables	X
In	troduction	1
Re	eview of Literature	4
1.	Salivary Gland Structure	4
2.	Differences Between Human and Rodent Salivary Glands	8
3.	Saliva	12
	3.1 Formation of Saliva	13
	3.2 Composition of Saliva	14
	3.3 Functions of Saliva	15
4.	Salivary Gland Hypofunction and Xerostomia	22
5.	Irradiation Induction in Salivary Glands	26
	5.1 Irradiation-Induced Xerostomia	26
	5.2 Irradiation-Induced Glandular Changes	29
	5.3 Molecular Mechanisms of Irradiation-Induced Salivary Gland	
	Damage	30
	5.4 Strategies to Avoid Irradiation-Induced Salivary Gland	
	Hypofunction	36
	Stem Cell Therapy	38
	Platelet Rich Plasma	43
Ai	m of the Study	47
M	aterial and Methods	48

1.	Experimental Animal Selection	48			
2.	Bone Marrow-Derived Mesenchymal Stem Cells (BM-MSCs) Isolation and Culture	49			
3.	Platelet-Rich Plasma (PRP) Preparation	59			
4.	Transplantation	64			
5.	Histopathological Examination	69			
6.	Immunohistochemical Staining and Analysis	69			
7.	Histochemical Staining and Analysis	75			
8.	Statistical Analysis	76			
Re	esults	79			
1.	Histopathological Results	80			
2.	Immunohistochemical Results	87			
3.	Histochemical Results	93			
4.	Statistical Results	97			
Discussion 132					
Conclusions					
Recommendations					
Summary 161					
References					
Aı	Arabic Summary				

List of Abbreviations

ADP: Adenosine Diphosphate

AEP: Acquired Enamel Pellicle

AIDS: Acquired Immunodeficiency Syndrome

ANOVA: Analysis of Variance

AP-1: Activator protein-1

ATM: Ataxia Telangiectasia Mutated

ATP: Adenosine Triphosphate

Bax: Bcl-2 Associated x protein

Bcl-2: B-cell lymphoma 2

Bcl-xL: B-cell lymphoma-extra large

bFGF: basic Fibroblast Growth Factor

BM-MSCs: Bone Marrow Mesenchymal Stem Cells

BMP-2: Bone Morphogenetic Protein 2

CaCl2: Calcium Chloride

CCR: Coupled Chemokine Receptor

CD: Cluster of Differentiation

CFU-F: Colony Forming Unit Fibroblasts

CXCL: C-X-C Chemokine Ligand

CXCR: C-X-C Chemokine Receptor

DMEM: Dulbecco's Modified Eagle's Medium

DNA: Deoxyribonucleic Acid

DSBs: Double Strand Breaks

ECGF: Epithelial Cell Growth Factor

ECM: Extracellular Matrix

ED: Excretory Duct

EDTA: Ethylene Diamine Tetraacetic Acid

EGF: Epidermal Growth Factor

EMT: Epithelial Mesenchymal Transition

ERK: Extracellular Signal-Regulated Kinases

FBS: Fetal Bovine Serum

GCTs: Granular Convoluted Tubules

GF: Growth Factor

GM-CSF: Granulocyte Macrophage-Colony Stimulating Factor

Gy: Gray

H&E: Hematoxylin and Eosin

HGF: Hepatocyte Growth Factor

HIV: Human Immunodeficiency Virus

ID: Intercalated Duct

IgA: Immunoglobulin A

IGF-1: Insulin-Like Growth Factor-1

IgG: Immunoglobulin G

IgM: Immunoglobulin M

IL: Interleukin

IMRT: Intensity-Modulated Radiation Therapy

ISCT: International Society for Cellular Therapy

JAK: Just Another Kinase

JNK: c-Jun N-terminal kinases

KGF: Keratinocyte Growth Factor

MAF: Mean Area Fraction

MAPK: Mitogen Activated Protein Kinase

MCP-1: Monocyte Chemoattractant Protein-1

MDM2: Mouse Double Minute 2 Homolog

MHC: Major Histocompatibility Complex

MMP: Matrix Metalloproteinase

MRN: Mre11, Rad50 and Nbs1

MSCs: Mesenchymal Stem Cells

MT1-MMP: Membrane Type 1 Matrix Metalloproteinase

MVD: Microvessel Density

NF-κβ: Nuclear Factor kappa Beta

OH: Hydroxyl Ion

OPN: Osteopontin

P53: 53-Kilodalton Protein

PBS: Phosphate Buffered Saline

PCNA: Proliferating Cell Nuclear Antigen

PDAF: Platelet-Derived Angiogenesis Factor

PDEGF: Platelet-Derived Epidermal Growth Factor

PDGF: platelet-Derived Growth Factor

PECAM: Platelet-Endothelial Cell Adhesion Molecule

pH: Power of Hydrogen

PI3K: Phosphoinositide 3-kinases

PRP: Platelet Rich Plasma

PSR: Picrosirius Red Stain

PUMA: P53 Up-regulated Modulator of Apoptosis

RBC: Red Blood Cells

ROS: Reactive Oxygen Species

S1P: Sphingosine-1-phosphate

SC: Stem Cell

SD: Standard Deviation

SD: Striated Duct

SDF-1: Stromal-Derived Factor-1

SG: Salivary Gland

SPSS: Statistical Package for Social Science

STAT: Signal Transducer and Activator of Transcription Proteins

TGF-α: Transforming Growth Factor Alpha

TGF-β: Transforming Growth Factor Beta

TIMP: Tissue Inhibitor of Metalloproteinase

VEGF: Vascular Endothelial Growth Factor

Wnt: Wingless-related integration site

α-SMA: Alpha-Smooth Muscle Actin

List of Figures

Fig. 1: Schematic of the three major types of salivary glands and general
gland structure
Fig. 2: Salivary Gland Structure
Fig. 3: Human regional cervical anatomy
Fig. 4: Mouse regional cervical anatomy
Fig. 5: Macroscopic anatomy of the anterior neck portion of mice before
and after removal of fat tissues
Fig. 6: Two stage salivary gland secretion model
Fig. 7: Functions of saliva
Fig. 8: Molecular mechanisms of irradiation-induced salivary gland
damage
Fig. 9: Direct and indirect DNA damage following ionising irradiation
exposure
Fig. 10: Biological properties of MSCs
Fig. 11: An incision around the perimeter of the hind limb
Fig. 12: Vertical laminar flow
Fig. 13: Dulbecco's Modified Eagle's Medium
Fig. 14: Bones with 10 ml complete medium

Fig. 15: Bone cutting in a vertical laminar flow using proper sterile technique	
Fig. 16: Flushing the marrow plug by a 23-gauge needle with complete	
medium55	
Fig. 17: The marrow plug with complete medium in a 10 ml tube 55	
Fig. 18: Cell pellet after discarding the complete medium	
Fig. 19: Culture flasks incubated at 37 °C	
Fig. 20: Day 0 (isolation day): photomicrograph showing cells with	
rounded morphology and cell aggregates of BM-MSCs mixed with non-	
adherent blood cells (x200)	
Fig. 21: Second week of culture: photomicrograph showing stellate or	
spindle-shaped BM-MSCs at about 80% confluency (x200)58	
Fig. 22: Fourth week of culture: photomicrograph showing spindle-	
shaped BM-MSCs. Cell impurities were significantly reduced (x200) 59	
Fig. 23: Flow cytometric analysis of BM-MSCs for CD45 after isolation	
showing 13.9% positive expression	
Fig. 24: Flow cytometric analysis of BM-MSCs for CD105 after	
isolation showing 88.5% positive expression	
Fig. 25: Separation of red blood cells and plasma	
Fig. 26: Plasma was pipetted to be transferred into another tube 64	
Fig. 27: PPP at the top and pelleted platelets at the bottom of the tube 65	

Fig. 28: Separating the supernatant PPP from the pelleted platelets 65
Fig. 29: Experimental study design
Fig. 30: A bar chart representing the MAF values of PCNA expression
after one week
Fig. 31: A bar chart representing the mean values of PCNA expression
after two weeks
Fig. 32: A bar chart for the comparison between the two durations in
group 2 regarding MAF of PCNA
Fig. 33: A bar chart for the comparison between the two durations in
group 3 regarding MAF of PCNA
Fig. 34: A bar chart for the comparison between the two durations in
group 4 regarding MAF of PCNA
Fig. 35: A bar chart representing the mean values of CD31 expression
after one week
Fig. 36: A bar chart representing the mean values of CD31 expression
after two weeks
Fig. 37: A bar chart for the comparison between the two durations in
group 4 regarding MAF of CD31110
Fig. 38: A bar chart representing the mean values of PSR expression
after one week111
Fig. 39: A bar chart representing the mean values of PSR expression
after two weeks

Fig. 40: A bar chart for the comparison	between	the	two	durations in
group 2 regarding MAF of PSR stain		•••••	•••••	116
Fig. 41: A bar chart for the comparison	between	the	two	durations in
group 4 regarding MAF of PSR stain		•••••		116
Fig. 42: A bar chart for the comparison	between	the	two	durations in
group 5 regarding MAF of PSR stain				117