

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

The Effect Of Four Implants Versus Two Implants Connected With Bar Retained Mandibular Overdenture On Biting Force.

Submitted to the Faculty of Dentistry, Ain-Shams
University in partial fulfillment of the requirements for
Doctoral Degree in oral and maxillofacial
Prosthodontics.

Submitted by:

Omayma Ahmad Mohamad

Assistant Lecturer at Fayoum University

B.D.S 2008 M.D.S 2014 Cairo University

Faculty of Dentistry Ain Shams University 2022

Supervised by:

Prof. Dr. Mahmoud Hasan El Afandy

Professor of oral and maxillofacial Prosthodontic

Faculty of dentistry

Ain shams university

Dr. Amr Salah El Din Abd El Shafy

Assistant professor of oral and maxillofacial

Prosthodontics

Faculty of dentistry

Fayoum University

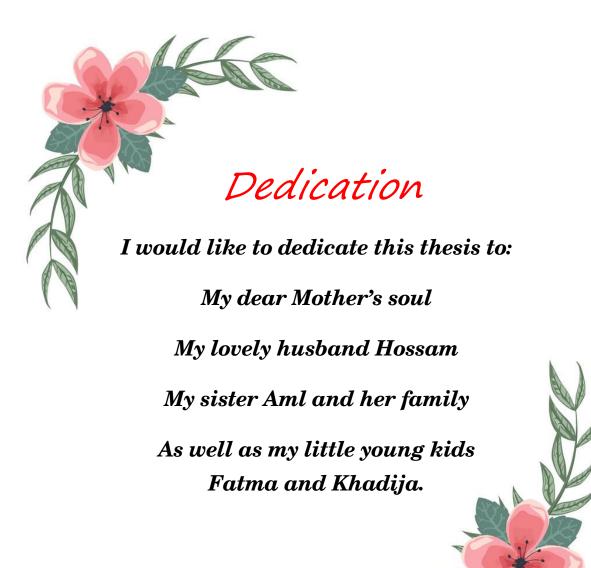
Dr. Marwa kothayer Abd El Hakim

Assistant professor of oral and maxillofacial

Prosthodontics

Faculty of dentistry

Ain shams University


Acknowledgment

I'm very grateful to AUAH for without his graces and blessings, this study would not have been possible.

Immeasurable appreciation and deepest gratitude to *Prof. Dr. Mahmoud Wasan & Afandy* Professor of oral and maxillofacial Prosthodontics, Faculty of Dentistry, Ain Shams University, under whose supervision I had the honor to proceed with this study, for his guidance and constant supervision, as well as for his support and words of encouragement.

I would like to express my deepest thanks to **Dr.**Amar Salah El Din Assistant Professor of oral and maxillofacial Prosthodontics, Faculty of Dentistry, Fayoum University, for his intensive supervision, kind help, valuable comments, and advice, will always be sincerely remembered. and also the staff members of prosthodontics department, Ain Shams University.

Cmayma Ahmad Mohamad

Tist of Contents

Title	Page No.
List of Figures	i
List of Tables	iv
List of Abbreviations	v
Introduction	1
Review of Literature	3
Problems of complete edentulism and conventional t	reatmenr3
Implant Overdentures	4
Implant supported overdenture classified into:	4
Implant overdenture may be classified according to provement (PM) into:	•
The first option (OD-1)	6
The second option (OD-2)	7
The third option (OD-3)	7
The fourth option (OD-4)	7
The fifth option (OD-5)	7
Surgical Protocols	10
Loading Protocols	10
Overdenture Attachments	11
Classification of Attachments	12
According to the method of fabrication:	12
According to the function or movement:	12
According to mode of retention:	12
According to the design:	13
Types of stud attachments:	13
I) Types of bars based on resiliency:	18

a) Bar joint:	18
b) Bar unit:	19
II) Types of bars according to retention mechanism:	19
a) Bar and clip attachments:	19
b) Bar with stud attachments:	20
c) Milled bar with spark erosion technology:	20
d) Bar with stud attachments:	21
e) Milled bar with spark erosion technology:	22
III) Types of bars according to the manner of connection to the implants:	22
a) Screw retained bars	22
b) Cement retained bars	23
Examples of bar attachment:	24
a) Dolder bar attachments:	24
b) Hader bar attachments (The Preci-Horix):	24
c) Ackermann bar	24
d) Ceka bar	25
e) OT multiuse bar	25
Advantages and disadvantages of bar attachments:	25
Implant Surgical Guides:	26
Radiographic Evaluation of Implant	28
Phase 1: Pre-surgical Implant Imaging	28
Phase 2: Surgical and Interventional Implant Imaging	28
Phase 3: Post-prosthetic Implant Imaging	29
Types of imaging modalities	30
1. Periapical Radiography	30
2. Panoramic Radiography	30
3. Magnetic Resonance Imaging	31
4. Computed Tomography	31

5. Cone Beam Computed Tomography	32
T-scan	33
Biting force	36
Devices for recording Bite Force:	36
I. Strain Gauge Transducer	37
II. Piezoelectric Transducers:	37
III. Pressure Transducers:	38
IV. Pressure Sensitive Foils:	38
V. Load cell sensor:	38
Factors affecting biting force:	40
I-Factors related to patient:	40
III-procedure related factors:	47
General consideration for recording Bite Force:	48
Aim of the Study	49
Materials and Methods	50
Results	82
Discussion	96
Conclusions	104
Recommendations	105
References	106

List of Figures

Fig. No.	Title	Page No.
Fig (1):	Pre-operative view for one of the selected ca	ases 53
Fig (2):	Pre-operative radiographic examination CBCT.	
Fig (3):	Upper and lower primary alginate impression	on55
Fig (4):	Upper and lower final zinc oxide and impression.	•
Fig (5):	Mounting upper cast according to maxil bow record	•
Fig (6):	Centric occluding relation record with cl technique.	
Fig (7):	Try in stage	58
Fig (8):	Upper & lower complete dentures in the mouth.	-
Fig (9):	Composite markers on the labial and lingua	l surface 60
Fig (10):	Dual scan	60
Fig (11):	Virtual implant planning.	61
Fig (12):	Stereo lithographic surgical guide	62
Fig (13):	Root form implant	63
Fig (14):	Occlusal index.	64
Fig (15):	Fixation of surgical guide with anchorage pa	ins 65
Fig (16):	Surgical kit.	65
Fig (17):	Punch mucosa through each metal sleeve	66
Fig (18):	Sequential drilling for each implant thresurgical guide.	_
Fig (19):	Paralleling rods to confirm parallelism installed implants.	
Fig (20):	Manual ratchet wrench	67

Tist of Figures (Cont...)

Fig. No.	Title	Page No.
Fig (21):	Covering screws.	68
Fig (22):	Cone beam radiograph after implant placem	ent 68
Fig (23):	Healing abutments	69
Fig (24):	Splinting of impression copings	70
Fig (25):	Open tray impression with implant analogue	es71
Fig (26):	Verification jig.	71
Fig (27):	Periapical radiograph with jig	72
Fig (28):	UCLA abutments& bar attached to implant ar	nalogues 72
Fig (29):	Finished fabricated bar.	73
Fig (30):	Periapical radiograph with bar	73
Fig (31):	Checking of the bar in patient mouth	74
Fig (32):	New lower denture	74
Fig (33):	Blocking out under the bar with putty rubbe	r base 75
Fig (34):	Plastic clips picked up in the final denture	76
Fig (35):	T scan III system.	76
Fig (36):	Patient clench during recording a scan by device.	
Fig (37):	T scan III software system interface	78
Fig (38):	The I-load star sensor device.	79
Fig (39):	Patient biting on the load sensor	80
Fig (40):	Load star sensor software interface	81
Fig (41):	Scattered chart representing normal bell explored data.	
Fig (42):	Biting forces of group A at baseline & after & after 3 months	

Tist of Figures (Cont...)

Fig. No.	Title	Page No.
Fig (43):	Biting forces of group B at baseline & after 3 months.	
Fig (44):	Comparison between group A & B regard forces at baseline, after 1 month & after 3	0
Fig (45):	Biting forces changes between different i Group A	
Fig (46):	Biting forces changes between different i Group B	
Fig (47):	Comparison between group A (2 imp group B (4 implants) regarding biting force	

Tist of Tables

Table No.	Title	Page No.
Table (1):	Normality exploration of both groups: .	83
Table (2):	Mean & standard deviation of bitin group A	
Table (3):	Mean & standard deviation of bitin group B	
Table (4):	Comparison between group A & B regatorces at baseline, after 1 month & after in right side, left side & overall:	er 3 months
Table (5):	Mean difference & standard deviation forces between baseline & after 1 momenth & after 3 months and baselin months in right side, left side & overal (2 implants):	onth, after 1 e & after 3 l in group A
Table (6):	Mean difference & standard deviation of difference between baseline & after 1 m month & after 3 months and baseline & a in right side, left side & overall in implants):	nonth, after 1 fter 3 months group B (4
Table (7):	Comparison between group A (2 im group B (4 implants) regarding by difference between baseline & after 1 1 month & after 3 months and baseling months in right side, left side & overall	iting forces month, after ne & after 3

Tist of Abbreviations

Abb.	Full term
2D	Two-dimensional
3D	Three dimensional
<i>APT</i>	Alkaline phosphate test
<i>CBCT</i>	Cone beam computed tomography
CT	Computed tomography
<i>ERA</i>	Extra-coronal Resilient Attachment
<i>MBL</i>	Marginal bone loss
<i>MPR</i>	Multi-planar reformation
MRI	Magnetic resonance imaging
<i>OD</i>	Overdenture
<i>PM</i>	Prosthesis movement
<i>SD</i>	Standard deviation
TMDs	Temporomandibular joint disorders
<i>TMJ</i>	Tempromandibular joint

Introduction

Denture wearers mostly reported problems with masticatory function, mainly caused by retention and stability problems of the mandibular prosthesis. Masticatory function of those patients is quite poor in comparison with that of healthy dentition subjects. Oral function significantly improves after rehabilitation with mandibular implant over denture. (1, 2)

It was noticed that overdenture wearers have masticatory conditions more similar to that of dentate individuals than complete denture wearers. This advantage is quite important to provide ideal nutritional condition and better quality of life to edentulous subjects. (3,4)

Bite force is one indicator of the functional state of the masticatory system that result from action of jaw elevator muscles modified by Cranio-mandibular biomechanics. (5)

The influence of bite force on the masticatory system is very profound. The magnitude of bite force has shown to be correlated to the patients' satisfaction with their complete dentures, type of patients' food intake as well as the amount of bone resorption under prostheses. (6,7)

Various treatment modalities with implant supported prosthesis have been described for mandibular edentulous ridges⁽⁸⁾. Two to four dental implants placed in bimental region has shown high success rate. (9) It was reported that peri-implant health between two implants and four implants had no significant differences (10). In addition, the prosthetic maintenance, complications, and patient satisfaction of two and four implant groups do not

Tntroduction

appear to be significantly different.⁽¹¹⁾ However, it was reported in both invivo and in-vitro studies that retention and stability of the dentures improves with increasing implant number and distribution.^(12, 13)

Implants splinted together with bars may decrease the risk of overload to each implant as a result of greater surface area, load sharing between implants and improve biomechanical distribution. (14)

T-Scan is a computerized occlusal force analysis device which is an essential part of clinical functional analysis in prosthetic insertions. The T-Scan computerized system can rapidly determine prematurity, high points, region of excessive force and non-uniform force concentration it can also analyze dis occlusion time accurately. (15)