

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / حسام الدين محمد مغربي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

ملاحظات: لا يوجد

METAGENOMIC ANALYSIS OF THE BACTERIAL COMMUNITIES ASSOCIATED WITH AGRICULTURAL LAND RECLAMATION

By

Mohamed Hassan Mahmoud Mohamed Korkar

B.Sc. Agric. Sc., Biotechnology, Fac. Agric., Cairo University, 2019

A Thesis Submitted in Partial Fulfillment Of The Requirements for the Degree of

> MASTER OF SCIENCE in Agricultural Sciences (Genetics)

> > Department of Genetics Faculty of Agriculture Ain Shams University

Approval Sheet

METAGENOMIC ANALYSIS OF THE BACTERIAL COMMUNITIES ASSOCIATED WITH AGRICULTURAL LAND RECLAMATION

By

Mohamed Hassan Mahmoud Mohamed Korkar

B.Sc. Agric. Sc., Biotechnology, Fac. Agric., Cairo University, 2019

This thesis for M.Sc. degree has been approved by:			
Dr. Shireen Kamal Assem Professor of Biotechnology, Vice President of Agricultural Research Center- for Research Affairs.			
Dr. Mahmoud Magdy Abdallah Awad Assistant professor of Genetics, Faculty of Agriculture, Ain Sham University.			
Dr. Mohamed Abdel-Salam Rashed Professor Emeritus of Genetics, Faculty of Agriculture, Ain Sham University.			
Dr. Aiman Hanafy Abdel-Azeem Atta Professor of Genetics, Faculty of Agriculture, Ain Shams University.			

Date of Examination: / / 2022

METAGENOMIC ANALYSIS OF THE BACTERIAL COMMUNITIES ASSOCIATED WITH AGRICULTURAL LAND RECLAMATION

By

Mohamed Hassan Mahmoud Mohamed Korkar

B.Sc. Agric. Sc., Biotechnology, Fac. Agric., Cairo University, 2019

Under the supervision of:

Dr. Aiman Hanafy Abdel-Azeem Atta

Professor of Genetics, Genetics Dept., Faculty of Agriculture, Ain Shams University.

Dr. Mohamed Abdel-Salam Rashed

Professor Emeritus of Genetics, Genetics Dept., Faculty of Agriculture, Ain Shams University.

ABSTRACT

Mohamed Hassan Mahmoud Mohamed Korkar: Metagenomic analysis of the bacterial communities associated with agricultural land reclamation. Unpublished M.Sc. Thesis, Department of Genetics, Faculty of Agriculture, Ain Shams University, 2022.

The aims of this work are to identify the bacterial profile of agriculture-related soil samples using metabarcoding technique to compare and explore relevant rhizosphere bacteria associated with plant cultivation in newly reclaimed land and habitual cultivated ones. Total DNA was extracted from 15 samples that represented rhizosphere and non-cultivated areas derived from agricultural, reclaimed and desert land types in Egypt. Then bacterial 16S rDNA gene was amplified using a primer pair (338F) and 806R) and PCR products were sequenced of the V3-V4 variable region by NGS technology to profile each sample Among all samples, the most identified phyla were Actinobacteriota (28%),followed Proteobacteriota (26%), Firmicutes (14%), Acidobacteriota as well as Chloroflexi (7%), Gemmatimonadota (5%), Bacteriodota as well as Crenarchaeota (3%), and Myxococcota (2%), in addition to 37 other phyla with <1% counts. A total of 74 OTU was unique to the plant rhizosphere area and classified as Bacteriodota (5.1%:0.3%), Firmicutes (2.4%:0.1%), and Proteobacteria (3.5%:2%) phyla in agriculture and reclaimed lands, respectively. The bacteria, contained mobile elements, potentially pathogenic or tolerancy to stress, were highly presented in the rhizosphere than the uncultivated area and only high in the reclaimed lands rather than the agricultural or desert lands. Among all samples, the most presented cluster of ortholog genes (COG) was the amino acid transportation and metabolism that counted an average abundance of 30 M genes. Followed by a cluster of genes with unknown function or the genes of general function prediction. The energy production and conversion genes in addition to the transcription genes were among the highly abundant genes clusters. The correlation-based distance matrix revealed positively and negatively several correlation blocks of bacterial genera. The blocks were

defined by a descending letter in an accordance with the block size correlation. Major metal elements were detected from the sampling area among all land types including P, Fe, K, Mn, Zn and Cu in addition to the soil organic matter (OM). The species statistical association to soil elements was analyzed, where P was the most influential element value to the number of associated species (14 species). Moreover, the rhizosphere profile included a large portion of uncultured and unidentified bacterial species, which opened a window to further analysis. Our analysis provides a main knowledge about the rhizosphere microbiome and highlights its possible use to create microbial-based biofertilizers targeting plant performance in contrast to traditional fertilizers and their side effect on the agriculture sector.

Keywords: 16S rDNA Metabarcoding, Microbial community, Newly reclaimed lands, Exophyta and Soil microbiota

ACKNOWLEDGEMENTS

No one walks alone in this journey, I was blessed to have great supervisors, wonderful family, and friends; there is no ward to describe my gratitude to all of you.

I would like to thank **Prof. Dr. Aiman Hanafy Abdel-Azeem Atta**, Professor of Molecular Genetics, Genetics Dept., for his kind supervision, guidance, and support.

My sincere thanks to **Prof. Dr. Mohamed Abdel-Salam Rashed**, Professor Emeritus of Molecular Genetics, Genetics Dept., for his kind supervision, deeply thank him for his supporting, keen insert, advising me and always encourage me, I am grateful to him very much.

I wish if I could express sincere gratitude to **Dr. Mahmoud Magdy**, Associate Professor of Genetics, Genetics Dept., who helped me since the first day until now, guided me to walk and think in the right way, encouraged me, motivated me, share with me his knowledge and experience in everything. This thesis accomplished and appeared in this way with his help. All words are not enough to thank him.

I would like to thank my colleagues in the laboratory of molecular genetics – Genetics Department, in the Faculty of Agriculture, Ain Shams University. (Dr. Samah Soliman, Yosur Gamal, Hager Tarek, Moustafa Nafee, Mai Hesham and Zaynab Ibrahim); for their time, experience, help and support. They were patient to the maximum. Special thanks to Dr. Samah Soliman, Yosur Gamal and Hager Tarek for helping, supporting and guidance's during all stages of work.

No words can express my feeling to my lovely family: Father, Mother, Omnia; thank you for your patience, support, time, love and encouragement; you are the greatest blessings in my whole life.

CONTENTS

Title	Page
LIST OF TABLES	III
LIST OF FIGURES	IV
1- INTRODUCTION	1
2- REVIEW OF LITERATURE	4
2.1. Plants and Rhizosphere Microorganisms	4
2.2. Microbial Quorum Sensing	9
2.3. Microbial Autoinducers	14
2.4. Metagenomic 16S rDNA	21
3. MATERIAL AND METHODS	23
3.1. Material	23
3.1.1. Sampling locations	23
3.2. Methods	25
3.2.1. Sampling technique and Soil physico-chemical	
characterization	25
3.2.2. Soil physico-chemical characterization Protocol	26
3.2.3. DNA Extraction	26
3.2.3.1. Power Soil Mobio DNA Isolation Protocol	27
3.2.3.2. Agarose Gel Electrophoresis Protocol	28
3.2.4. 16S rRNA amplicon-based sequencing	30
3.2.5. Metabarcode data processing and analysis	30
4. RESULTS AND DISCUSSION	32
4.1. DNA extraction & PCR analysis	32
4.2. Species composition analysis	33
4.2.1. Taxonomical representation	33
4.2.2. OTUs inhabiting rhizosphere areas	36
4.3. Prediction analysis	41
4.3.1. Phenotypic prediction	41
4.3.2. Functional prediction	43
4.4. Association analysis	45
4.4.1. Co-occurrence correlation network	45
4.4.2. Association to soil properties	50
5. SUMMARY	53

6. REFERENCES
ARABIC SUMMARY

56

LIST OF TABLES

Table No.		Page
(1)	A list of the soil sample collections describing the land types, plantation, and the area for each sample. Samples were identified by a specific	
	sample code.	24