

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / حسام الدين محمد مغربي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

ملاحظات: لا يوجد

Color Stability and Marginal Adaptation of Ceramic Veneers Cemented using Different Composite Resins

A thesis submitted to

The Faculty of Dentistry (Ain-Shams University)

In the Partial Fulfillment of the Requirements for Doctor Degree in

Fixed Prosthodontics

By

Basma Refaat Mohamed Fayad

B.D.S. (2011) Ain-Shams University

M.Sc. (2018) Ain-Shams University

Faculty of Dentistry

Ain-Shams University

(2022)

Supervisors

Dr. Maged Mohamed Zohdy

Assistant Professor of Fixed Prosthodontics Department, Faculty of Dentistry, Ain Shams University

Dr. Ghada Abd El-Fattah Hussein

Assistant Professor of Fixed Prosthodontics Department,
Faculty of Dentistry, Ain Shams University

Dr. Engy Adel Farag

Lecturer of Fixed Prosthodontics Department,
Faculty of Dentistry, The British University in Egypt

CONTENTS

List of Figure	.I
List of tables	.IV
Introduction	. 1
Review of literature	.3
Statement of the problem	.3
Aim of the study	.44
Null Hypothesis	.45
Materials and Methods	.46
Results	.75
Discussion	.88
Summary	. 104
Conclusion	. 107
References	.108

Acknowledgements

This work would not have been possible without the support of some very dedicated people.

My deepest appreciation to **Dr. Maged Zohdy,** Assistant Professor of Fixed Prosthodontics Department, Faculty of Dentistry, Ain Shams University for his continuous help and guidance. I am honored to be one of his students. I will always remain grateful to him.

I would like to express my sincere appreciation for **Dr. Ghada Abd El Fattah Hussein** Assistant Professor of Fixed Prosthodontics Department, Faculty of Dentistry, Ain Shams University for her endless encouragement, patience, and support during the work.

No words could be sufficient for expressing my gratitude to **Dr. Engy Adel Farag** Lecturer of Fixed Prosthodontics Department, Faculty of Dentistry, The British University in Egypt for her immense support, fruitful criticism and infinite encouragement, making it possible to carry this work forward, she is not only my teacher she is also my role model and best friend. Finally, yet importantly, A very special gratitude goes to all the staff members of Fixed Prosthodontics, Faculty of Dentistry The British University in Egypt under the leadership of **Dr. Ahmed Ezzat Sabet**, Assistant Professor of Fixed Prosthodontics, Faculty of Dentistry, Ain-Shams University for all their support and help.

Dedications

All thanks to Allah for all his blessings,

To my dear husband and my best friend Islam Heiba who had been my source of inspiration and gave me strength when I thought of giving up, who continually provides his practical and emotional support helping me to be a better version of myself in all life aspects, I am truly thankful for having you in my life

To my mom and dad, for carving me into what I am today, and pushing me to be the best I can be. I hope I make them proud

To my sister and my brother for always being there for me,

LIST OF FIGURE

Figure	Subjects	Page
Figure 1	Surveyor	50
Figure 2	Different views for the mounted acrylic tooth	51
Figure 3	Depth cuts on the surface of the acrylic tooth	52
Figure 4	Templates placed on the reduced acrylic tooth	53
Figure 5	Duplication of the samples with impression material	54
Figure 6	Epoxy die	55
Figure 7	Samples numbering	55
Figure 8	PrimeScan	56
Figure 9	The inLab MCXL milling unit	56
Figure 10	Cerec SpeedFire furnace	56
Figure 11	3D virtual image for the abutment	57
Figure 12	Restoration parameters	58
Figure 13	Editing the preparation margin	59
Figure 14	Determining the insertion axis	59
Figure 15	The proposed veneer design	60
Figure 16	IPS e.max CAD block	61
Figure 17	MCXL milling instruments for IPS E.max CAD	61
	blocks A - Step bur 12s B - cylinder bur 12s	
Figure 18	The proposed milled veneer	61
Figure 19	Grinding instruments for finishing pre-crystalized	62
	lithium disilicate veneerss	
	A: margin finishing, B: attachment smoothening,	
	C: surface finishing	

List of Figures

Figure	Subjects	Page
Figure 20	Try in of the milled veneers on dies	63
Figure 21	Glaze of the milled veneer	64
Figure 22	Try in of veneers after crystallization	64
Figure 23	Etching with hydrofluoric acid gel.	65
Figure 24	Silanization by silane coupling agent	66
Figure 25	Rely x veneer cement	67
Figure 26	Cementation using specially designed loading	67
	device	
Figure 27	Light curing for the ceramic veneer under load	68
Figure 28	Ceramic veneer after cementation	68
Figure 29	Flowable composite application on the fitting surface of the veneer.	69
Figure 30	Composite in the preheating special device.	70
Figure 31	Thermocycling procedure after cementation	71
Figure 32	Specetrophotometer	72
Figure 33	Digital microscope mounted on a precision stand	73
Figure 34	Marginal fit under microscope before and after cementation	74
Figure 35	Bar chart showing Δa , Δb , ΔL and ΔE mean values after thermocycling with each cement type group.	76
Figure 36	Effect of cement type on color difference (ΔE) after thermocycling.	77
Figure 37	Effect of cement type on difference in Δa after thermocycling.	79
Figure 38	Effect of cement type on difference in Δb after thermocycling.	80

List of Figures

Figure	Subjects	Page
Figure 39	Effect of cement type on difference in ΔL after	82
	thermocycling.	
Figure 40	Effect of cementation on marginal gap within each	84
	cement type group.	
Figure 41	Effect of thermocycling on marginal gap within each	86
	cement type group.	
Figure 42	Effect of cementation and thermocycling on	87
	marginal gap between cement type groups.	

LIST OF TABLES

TABLE		Page
Table 1	Materials used in the study	46
Table 2	Variables in the study	48
Table 3	Experimental factorial design	49
Table 4	Descriptive data showing mean and standard deviation of Δa , Δb , ΔL and ΔE mean values after thermocycling with each cement type group.	75
Table 5	Mean \pm St. deviation and P-value for the effect of cement type on color difference (ΔE) after thermocycling.	77
Table 6	Mean \pm St. deviation and P-value for the effect of cement type on difference in Δa after thermocycling.	78
Table 7	Mean \pm St. deviation and P-value for the effect of cement type on difference in Δb after thermocycling.	80
Table 8	Descriptive data showing mean and standard deviation of marginal gap before and after cementation and after thermocycling within each cement type group.	81
Table 9	Mean \pm St. deviation and P-value for the effect of cementation on marginal gap within each cement type group.	83
Table 10	Mean \pm St. deviation and P-value for the effect of thermocycling on marginal gap within each cement type group.	84
Table 11	Mean \pm St. deviation and P-value for the effect of cementation and thermocycling on marginal gap between cement type groups.	85
Table 12	Mean ± St. deviation and P-value for the effect of cementation and thermocycling on marginal gap between cement type groups.	87

INTRODUCTION

Aesthetic restorations in a conservative way are very important. For that, there is continuous updating in restorative materials and the used techniques, to provide both the patient and the dentist esthetic requirements in a least invasive or noninvasive way. Porcelain veneers showed durability more than that of composite veneers. Glass ceramics showed general improvement in their mechanical and physical properties, that makes them ideal to be used as dental restorative material. (1)

One of the major challenges for modern dentistry is to achieve the perfect optical properties of natural teeth with artificial materials. In general, the optical behavior of a ceramic restoration is determined by the combination of the underlying tooth structure color, the thickness of the ceramic layers, and the color of the cement. In clinical situations, it is essential to understand how the color of a cemented ceramic restoration may change after aging in the oral cavity. (2)

Resin cements are often used for the cementation of all-ceramic restorations, as they have good esthetic and mechanical properties, low solubility in the oral environment and can be adhesively bonded to dental tissue. Meanwhile, in order to benefit from the physical properties of light-activated composite resins, as well as an improved cost benefit compared to resin cements, some practitioners have been using flowable resin composites for the cementation of ceramic veneers. (3)

Ceramic veneers can be cemented also with composite resins. There is a growing interest in making composite resins with higher filler content less viscous by using pre-heating, without affecting the properties of the polymerized material. Some of the possible advantages of pre-heating

composite resins include better adaptation of the material to the cavity walls, lower potential for the formation of defects at the margins, increase in the degree of conversion and, consequently, better physical, and mechanical properties.(4,5)

The long-term clinical performance of laminate veneers depends on several factors, with marginal adaptation being one of significance. It is critical to establish an acceptable marginal adaptation in laminate veneers because of the inherent limitations of composite resin luting agents, such as relatively high polymerization shrinkage, low resistance to clinical wear, and a high coefficient of thermal expansion.(6)

Artificial accelerated ageing has been used to investigate the stability of dental restorations, including the discoloration of resin cements and all-ceramic restorations. Still, the color stability and marginal fit of cemented veneers using the preheated composite is questionable and needs further investigations.(7)

REVIEW OF LITERATURE

Towards the end of the last century, a climate of non-acceptance of metal alloys in the mouth emerged among some dentists and in the dental product industry and, given the increasing demand for esthetic treatments, these factors have driven the development of new all-ceramic prosthetic rehabilitations.(8)

Due to improvement of adhesive bonding and dental ceramic materials, all-ceramic anterior veneers have become a viable option enabling the clinician to treat esthetic and functional dental conditions by means of a tooth conserving and periodontally friendly method.(9)

The strengthening effect by adhesive luting has been attributed to infiltration of ceramic porosities and sealing of superficial cracks, leading to a better dissipation of mechanical stresses and lower stress concentration at the ceramic structure. Accordingly, there is increased usage of ceramic and composite materials and growth of the CAD/CAM market. This together with advances in dental bonding technology has led to the evolution of porcelain laminate veneers.(8)

Presently, there are many contemporary ceramic materials reinforced with leucite, lithium disilicate, zirconium dioxide, and aluminum oxide, which can be used to produce minimally invasive restorations with thicknesses ranging from 0.1 to 0.7 mm, thus requiring minimum or no tooth structure preparation.(10)

Ceramic veneers

Ceramic veneers have been considered one of the most viable treatment modalities since their introduction in 1983. Aesthetic veneers in ceramic materials demonstrate excellent clinical performance and, as materials and techniques have evolved, veneers have become one of the most predictable, most aesthetic, and least invasive modalities of treatment.(11)

Nowadays, glass-ceramics are broadly used in fabrication of laminate veneers due to the continuous improvements of their mechanical properties associated to better microstructures and new processing methods. The adequate mechanical properties of these materials reflect in the good longevity of such dental restorations.(12,13)

The desire for more durable aesthetic outcomes did not confine to improve the material type only; new preparation designs were introduced to the field of dental veneers. (2)

Different opinions have been reported about superior preparation design over the others. In fact, due to the great variety in the materials, preparations designs and luting cement, favorable approaches to restore teeth with veneers have been controversial.(13)

Although there are different opinions and different results in studies that investigate the influence of preparation design on the survival of the restoration. It seems that incisal overlap preparation provides the best support for the restoration and distributes occlusal forces over a larger surface area.(14, 15)