

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / حسام الدين محمد مغربي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

ملاحظات: لا يوجد

Ain-Shams University Faculty of Science **Microbiology Department**

A study of the individualized immune response of expressed hepatitis C virus antigens in peripheral blood mononuclear cells from healthy blood donors

A thesis submitted for the degree of Doctor of Philosophy in Science in Microbiology

By

Rola Nadeem Abdelshafy Ibrahim

B.Sc of Science - Faculty of Women for Arts, Science and Education - Ain Shams University (2007)

M.Sc. in Microbiology- Faculty of Science - Helwan University (2015)

To

Microbiology Department

Faculty of Science- Ain Shams University

Under supervision of

Professor of Virology Microbiology Department **Faculty of Science**

Ain Shams University

Professor of Biochemistry **Department of Therapeutic Chemistry** Pharmaceutical and Drug Industries

Research Institute

National Research Center

Prof. Amany Sayed Maghraby

Professor of Immunology and Parasitology Department of Therapeutic Chemistry Pharmaceutical and Drug Industries Research Institute National Research Center

2022

Ain-Shams University Faculty of Science Microbiology Department

Approval sheet

A study of the individualized immune response of expressed hepatitis C virus antigens in peripheral blood mononuclear cells from healthy blood donors

A Thesis Submitted for the degree of Ph.D. in Microbiology

Submitted by

Rola Nadeem Abdelshafy Ibrahim

(M.Sc. in Microbiology 2015)

Supervisor	Profession	Signature
Prof. Ahmed Barakat Barakat	Professor of Virology, Microbiology Department, Faculty of Science, Ain Shams University	
Prof. Mahmoud	Professor of Biochemistry, Department of	
Mohamed Bahgat	Therapeutic Chemistry, Pharmaceutical and	
	Drug Industries Research Institute, National	
	Research Center	
Prof. Amany Sayed	Professor of Immunology and Parasitology,	
Maghraby	Department of Therapeutic Chemistry,	
-	Pharmaceutical and Drug Industries Research	
	Institute, National Research Center	

Examiners committee:

Examiner	Profession	Signature
Prof. Mohamed	Professor of Biomedical Sciences, University of	
Elhadidy	Science and Technology, Zewail City of Science and Technology	
Prof. Ahmed Sherif	Professor of Microbiology and Immunology,	
Attia	Microbiology Department, Faculty of Pharmacy,	
	Cairo University	
Prof. Ahmed Barakat	Professor of Virology, Microbiology Department,	
Barakat	Faculty of Science, Ain Shams University	
Prof. Mahmoud	Professor of Biochemistry, Department of	
Mohamed Bahgat	Therapeutic Chemistry, Pharmaceutical and	
	Drug Industries Research Institute, National	
	Research Center	

بسم الله الرحمن الرحيم

Dedication

To Allah;

My savior, sustainer and the All Merciful

Papy;

Who left a part of himself alive in every word I speak and every gesture I make,

who paved a road of kindness to keep as safe wherever we go,

Acknowledgment

I would like to express my deep appreciation for those who without their teaching and guidance, this scientific journey wasn't to be completed

Prof. Mahmoud M. Bahgat, professor of Biochemistry, National Research Center., for his pioneering supervision and brilliant ideas and for being the professor who never ceases to teach and guide.

Prof. Ahmed B. Barakat, Professor of Microbiology, Faculty of Science, Ain Shams University, I was delighted to meet such an open-minded personality with a sincere intention for reform. I appreciate his scientific discussions and brainstorming.

Prof. Amany S. Maghraby, Professor of Immunology and Parasitology, National Research Center, for the support I was surrounded by her and for her uttermost concern about the deliverance of her students.

I would like to extend my gratitude to the generosity of my colleagues, who never ceased to support me through this delightful journey. My colleagues Asst. Prof. Marwa Ibrahim, Asst. Prof. Sohair Salem, RA. Marwa Abdl-Tawab and RA. Marwa Abd Elhamied, RA. Asma Mahmoud, and RA. Shady Gomaa.

I wish to give thanks to my supportive family and my sisters, **Asst. Prof. Dina Nadeem**; my first virology teacher, and **M.D. Rehab Nadeem**; my tranquilizer, for being the family everyone would dream to have.

ABSTRACT

Background and objectives. Hepatitis C virus (HCV) infection is a universal health threat, and Egypt is among the countries with a high prevalence of infection, the importance of vaccine development was emphasized due to the reported risks associated with direct-acting antivirals, the viral drug resistance, challenges of reinfection or relapses, and the drug cost burden, especially in developing countries. In the present study, we focus on developing an HCV envelope protein-based DNA vaccine tailored to mimic the spontaneous clearance event responses. The vaccine candidate was designed to elicit cellular and humoral responses. Also focuses on its *ex vivo* comparative evaluation in human cell populations from different individuals and *in vivo* evaluation in individual mice.

Materials and Methods. HCV E1/E2 DNA construct (EC) was designed based on the most immunogenic epitopes of E1 position 313-327 and an E2 stretch including the E2 neutralizing face of positions 412-538. Our study workflow followed four consecutive levels; in silico, in vitro, ex vivo, and in vivo. The in silico studies were conducted to confirm the broadness of the antibodies' neutralization effect among different HCV genotypes (Gt). The study was established on the E1-epitope and the E2 sequence stretch using 1095 and 1003 sequences, respectively representing the 7 HCV Gts known till today. Also, the expected cellular response in different population ethnicities to the designed vaccine candidate was analyzed. The ex vivo studies included testing the E1/E2 epitopes expression level was tested in PBMCs of five HCV-uninfected healthy donors transfected with the EC via real-time qPCR. Serum samples from twenty HCV antibody-positive patients were used to detect each individual PBMCs expressed antigens via ELISA. The in vivo studies included the immunization of two groups, five Swiss albino mice each, with either the EC or a control construct. The absolute numbers of lymph nodes' CD4+ and CD8+ T-lymphocytes were assessed.

Abstract

Results. The selected E1-epitope conservation level exceeded 90% of the residues except for the Gt7 with 85% conservancy. This reflects high conservation and a higher degree of broad neutralization with Gt1 through Gt6. The E2-stretch showed a range of conservancy between 81.39-86.11% with the other genotypes except for Gt4 where it reached 90.25%. The worldwide individuals predicted to respond to the epitopes used as a vaccine candidate reached 91.83% of the individual presented by the used database. While the coverage in Afrocentric ethnicity ranged from 76.99-to 90.16% of the individuals in East, West, Central, and North Africa. While South Africa showed a lower coverage of 34.16% only. Donors' PBMCs showed different levels of EC expression, using D5 as a ground value of 1; expression levels ranged between 0.83-2.61-fold in four donors, while donor-3 showed 34.53-fold expression. The antigens expressed in PBMCs were significantly reactive to the twenty HCV antibody repertoire (all p=.0001). All showed slightly different reactivity except for donor-3 who showed the lowest reactivity level. There was an increase in the CD4⁺ T-cell % in four of the five EC immunized mice compared to the control group (p=.03). No significant difference in CD8+ T-cells % was observed (p=.89).

Conclusion. We can conclude from this study that the described HCV vaccine candidate might result in a natural humoral response that is developed by natural infection. Also, it can elicit an early CD4⁺ T-cell response, which is the desired response to mimic the spontaneous clearance events that will prime CD8⁺ T-cell development. On the other side, we conclude that immune response differences might be related to individual differences in antigen processing and presentation. Also, the individual antigen expression and presentation might be independent of the antigenic reactivity levels. This stresses the importance of extending the individual-wise research in vaccine approach evaluation.

Keywords. HCV, PBMCs, DNA vaccine, envelope 1, envelope 2, CD4⁺ T-cell, CD8⁺ T-cell, Individualized response, T-lymphocyte.

ItemsPage numb	er
ACKNOWLEDGEMENTS	i
ABSTRACT	ii
LIST OF CONTENTS	iv
LIST OF FIGURES	viii
LIST OF TABLES	x
LIST OF ABBREVIATIONS	xi
CHAPTER 1 INTRODUCTION	1
AIM OF THE WORK	5
CHAPTER 2 REVIEW OF LITERATURE	6
2.1 HCV Prevalence and Treatment	6
2.2 Viral Eradication Still Unattained	7
2.3 HCV Genome Organization and Replication	10
2.4 Viral Morphogenesis and Lipoviroparticle (LVP) Maturation	11
2.5 Viral Entry and Transmission	14
2.6 Host Immune Response to HCV Infection.	.15
2.6.1 Innate Immune Response in Acute and Chronic Infection	.17
2.6.2 Adaptive Immune Response in Acute and Chronic HCV Infection	18
2.6.2.1 Cell-Mediated Immune Response	19
2.6.2.2 Humoral Immune Response	21
2.7 Challenges and Planning for HCV Vaccine Development	.22
2.7.1 Escape Mechanism from Humoral Response	23
2.7.2 Escape Mechanism from Cell-Mediated Response	.24
2.7.3 Consideration of Inhibitory Effects by HCV Proteins Expression	.26
2.8 Hypothetical Proposed Vaccine Design	.27

2.9 Approaches to Design Vaccine Candidates For HCV	27
2.10 HCV Envelope Protein as a Potential Target for HCV Vac Development	
2.11 PBMCs as Surrogate Models for Basic Vaccine Evaluation	37
2.12 Inter-Individual Diversity in Vaccine Development Design	40
CHAPTER 3 MATERIALS AND METHODS	43
3.1 <i>In silico</i> studies	43
3.1.1 HCV envelope 1 and 2 protein epitope selection	43
3.1.2 E1/E2 consensus sequence development	44
3.1.3 <i>Cis</i> -acting element insertion	
3.1.4 The B-cell binding domains prediction	
3.1.5 Percentage of conservation and similarity of the HCV genor	
epitopes to the sequence used to develop	-
construct	
3.1.6 Population coverage	
3.1.7 DNA E1/T2A/E2 plasmid construction	
3.2 <i>In vitro</i> studies	
3.2.1 DNA construct elution.	
3.2.2 TOP10 transformation and clone selection	
3.2.3 Confirmation of transformed clone's construct integrity	
3.2.4 Confirmation of insert and ORF orientation via PCR assay	
3.2.5 Culture and storage of the confirmed clone	
3.2.6 Plasmid purification using EndoFree plasmid maxi kit	
3.2.7 Plasmid's sequence confirmation via bidirectional	
sequencing reactions	57
3.2.8 Optimization of plasmid transfection into mammalian cell lines (
cell)	
3.2.9 RNA isolation, cDNA preparation and transcription analysis	
via qPCR	59
3.3 Fx vivo studies	60

3.3.1 Blood donors and blood sample withdrawal60
3.3.2 PBMC isolation using Ficoll gradient separation protocol61
3.3.3 Differential transcriptional level among donors assessed via
Semiquantitative PCR62
3.3.4 Individual HCV antigen detection by the HCV antibody repertoires
assessed via ELISA assay64
3.4 <i>In vivo</i> studies
3.4.1 Mice and immunization
3.4.2 Mice sacrifice and lymph node excision
3.4.3 Viable cell count69
3.4.4 Statistical analysis70
3.4.5 Ethics approval and good lab practice70
CHAPTER 4 RESULTS71
4.1 <i>In silico</i> studies
4.1.1 Epitopes ORF construction71
4.1.2 The four E1/E2 peptides recognition as separate B-cell binding
antigenic determinants73
4.1.3 In silico report on the broad neutralizing response to the construct
epitopes
4.1.4. Population coverage of the MHC molecule response to the construct's
epitopes
4.1.5 DNA construct design
4.2 <i>In vitro</i> studies
4.2.1 Confirmation of construct integrity77
4.2.2 Confirmation of correct insert orientation
4.2.3 Constructs transfection and GFP expression in 293T cells79
4.2.4 Construct transcription optimization in 293T cells80
4.3. <i>Ex vivo</i> studies
4.3.1 Differential transcriptional level among donors' PBMCs81
4.3.2 Individual HCV antigen detection by the HCV antibody

Repertoires	84
4.3.3. Plotting the net reactivity values of each donors'	reactivity to an HCV
repertoire	86
4.3.4. Comparison between donors' EC antigens' react	ivity to the individual
HCV antibody repertoires	87
4.4 In vivo experiments	89
CHAPTER 5: DISCUSSION	91
ENGLISH SUMMARY	106
CONCLUSIONS	110
RECOMMENDATIONS	111
CHAPTER 6: REFERENCES	112
APPENDIX 1	165
APPENDIX 2	166
APPENDIX 3	173
المستلخص	
الملخص	

LIST OF FIGURES

Figure title	Page
Figure 1: Hepatitis C virus (HCV) polyprotein.	10
Figure 2: Model of the hepatitis C virus (HCV) lipo-viro-particle	12
(LVP).	
Figure 3: Role of apolipoproteins during early steps of hepatitis C virus	14
(HCV) entry.	
Figure 4: Time courses of hepatitis C virus (HCV) infections during	16
the first 6 months of resolving infection.	
Figure 5: Time courses of hepatitis C virus (HCV) infections during	16
the first 6 months of chronic infection.	
Figure 6: Schematic representation of HCV envelope 2 protein.	33
Figure 7: Illustrative view for the epitopes Multiple sequence	72
alignment (MSA) of the selected HCV envelope	
Figure 8: B-cell binding domains prediction of the whole HCV	73
envelope ORF using the BepiPred-2.0: Sequential B-Cell Epitope	
Predictor IEDB tool	
Figure 9: Illustrative view for the mammalian expression construct	76
design	
Figure 10. Suggestial confirmation of construct integrity and F1/F2	77
Figure 10: Successful confirmation of construct integrity and E1/E2 insert size:	//
	78
Figure 11: PCR confirmation of the correct orientation of insert in	70
construct.	70
Figure 12: Constructs expression optimization in 293T cell line	79
Figure 13: Constructs transcription optimization in 293T cell line	80
Figure 14: Individual transcript expression levels by semi-qPCR	82

List of Figures

Figure 15: A close up on the results of the fold change in EC insert transcription	83
Figure 16: Reactivity of each individual's E1/E2 expressed antigens to HCV positive antibody repertoire compared to the cell lysate transfected with the control construct	84
Figure 17: Net values of donor's EC antigen reactivity to HCV antibody repertoires subtracting the background of donor's CC reaction value	86
Figure 18: Absolute CD4 ⁺ T-cell count per 1000 cells in the mesenteric lymph node of immunized mice groups with EC and CC	89
Figure 19: Absolute CD8 ⁺ T-cell count per 1000 cells in the mesenteric lymph node of immunized mice groups with EC and CC	90