

بسم الله الرهكن الرجيم

$\infty \infty \infty$

تم رفع هذه الرسالة بواسطة /صفاء محمود عبد الشافي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لايوجد

THE ABILITY OF SOME SELECTED ISOLATES OF Trichoderma spp. TO IMPROVE SEED VIABILITY AND PLANT HEALTH THROUGH SEED TREATMENTS

By

HEBA HAMDI HAMMAD AFIFI

B.Sc. Agric. Sc. (Plant pathology), Ain Shamus University, 2005 M.Sc. Agric. Sc. (Sustainable Agriculture), Mediterranean Agronomic Institute of Chania, Greece, 2010

> A Thesis Submitted in Partial Fulfillment Of The Requirement for the Degree of

DOCTOR OF PHILOSOPHY in

Agriculture Sciences
(Biotechnology and Food Safety in Arid Regions)

Department of Biotechnology and Food Safety in Arid Regions Arid Land Agricultural Graduate Studies and Research Institute Ain Shams University

Approval Sheet

THE ABILITY OF SOME SELECTED ISOLATES OF Trichoderma spp. TO IMPROVE SEED VIABILITY AND PLANT HEALTH THROUGH SEED TREATMENTS

By

HEBA HAMDI HAMMAD AFIFI

B.Sc. Agric. Sc. (Plant pathology), Ain Shamus University, 2005 M.Sc. Agric. Sc. (Sustainable Agriculture), Mediterranean Agronomic Institute of Chania, Greece, 2010

This thesis for Ph.D. Degree has been approved by: Dr. Hala Fawzy El-Saka Eissa Prof. of Genetics, Faculty of Biotechnology, Misr University for Science and Technology Dr. Abd El Wahab Mohamed Abd El Hafez Prof. Emeritus of Agri. Microbiology, Faculty of Agriculture, Ain Shams University Dr. Magdy Ahmed Madkour Prof. Emeritus of Biotechnology, Arid Land Agriculture Studies Research Institute, Ain Graduate and Shams University. Dr. Ayman Farid Abou-Hadid Prof. Emeritus of Vegetable Crops, Faculty of Agriculture, Ain Shams University.

Date of Examination: 24 / 3 / 2022

THE ABILITY OF SOME SELECTED ISOLATES OF Trichoderma spp. TO IMPROVE SEED VIABILITY AND PLANT HEALTH THROUGH SEED TREATMENTS

By

HEBA HAMDI HAMMAD AFIFI

B.Sc. Agric. Sc. (Plant pathology), Ain Shamus University, 2005 M.Sc. Agric. Sc. (Sustainable Agriculture), Mediterranean Agronomic Institute of Chania, Greece, 2010

Under the supervision of:

Dr. Ayman Farid Abou Hadid

Prof. Emeritus of Vegetable Crops, Department of Horticulture, Faculty of Agriculture, Ain Shams University (Principal supervisor).

Dr. Magdy Ahmed Madkour

Prof. Emeritus of Biotechnology, Department of Biotechnology and Food Safety in Arid Regions, Arid Land Agriculture Graduate Studies and Research Institute, Ain Shams University.

Dr. Neveen Abdelfatah Hassan

Head Researcher, National Gene Bank, Agricultural Research Center.

ABSTRACT

Heba Hamdi Hammad Afifi: The Ability of some Selected Isolates of *Trichoderma* spp. to Improve Seed Viability and Plant Health through Seed Treatments, Unpublished Ph.D. Thesis, Department of Biotechnology and Food Safety in Arid Regions, Arid Land Agricultural Graduate Studies and Research Institute (ALARI), Ain Shams University, 2022.

Among ninety eight *Trichoderma* isolates obtained from plant rhizosphere soil of sixteen governorates in Egypt, and conserved seeds. Nine isolates were highly performed against high temperature, salinity and drought stresses under in vitro conditions and pot experiments. Also, they showed their ability as biological against the phytopathogenic control agents fungi Fusarium oxysporum and Rhizoctonia solani through the dual culture technique with more than 85% inhibition. The nine isolates were phenotypically characterized and identified by specific species confirmed which their species as five isolates Trichoderma harzianum, three isolates of Trichoderma viride, and one isolate of Trichoderma virens. The isolates NGB-T14, NGB-T20 and NGB-T33 were able to grow at ±45°C in in vitro, and the NGB-T14, NGB-T16, NGB-T17 and NGB-T18 isolates showed a significant salinity tolerance up to 2M. While the NGB-T59, NGB-T86 and NGB-T90 were grown in 30% PEG for drought tolerance. The ex vivo pot treatments under abiotic stresses with selected isolates were tested individually and showed enhancement in morphological and biochemical traits compared with the untreated seeds. In determination of the biochemical traits, proline and chlorophyll were significantly increased under severe abiotic stresses. T. harzianum (NGB T14) alleviated the heat stress on plants to survive under $\pm 40^{\circ}$ C. Moreover, T. harzianum (NGB-T14) gave the best profile in high salinity levels that can reach 12 dSm⁻1. The isolate *T. viride* (NGB-T59) was the best in drought tolerance. These observations may be of use to phytosanitary services for growers and agricultural researchers under the arid land for sustainable utilization.

Key Words: Abiotic stresses, Seed treatments, *Trichoderma* sp., Biofertlizer, Proline detection and Genotypic Identification.

ACKNOWLEDGMENT

I would like to express my deep gratitude to my supervisors **Dr. Magdy Madkour,** Professor Emeritus of Biotechnology, Arid Land Agriculture Graduate Studies and Research Institute, Ain Shams University for the kindness, guidance and support he has provided throughout the course of this work, and specially his valuable comments and constructive criticism.

With my all sincere appreciation, I would like to acknowledge **Dr. Ayman Farid Abou-Hadid,** Professor Emeritus of Vegetable Crops, Faculty of Agriculture, Ain Shams University for his, teaching, guidance, valuable advises and the very important scientific support.

Special thanks are due to **Dr. Neveen Abdelfatah Hassan,** Head Researcher, National Gene Bank, Agricultural Research Center., for her supervision and continues help in all practical parts.

Great thanks are to **Dr. Usama el Behairey**, Dean of Arid Land Agriculture Graduate Studies and Research Institute, Ain Shams University for his valuable time, close guidance and keen interest.

A sincere acknowledges should be mentioned to **Dr. Al-Haythm Al-Essawy** for his remarkable help in the statistical analysis. Also, I'm very grateful to all collages and members of the national gene bank of Egypt, Agriculture research center and the staff of Arid Land Agriculture Graduate Studies and Research Institute, Ain Shams University for their useful support.

Finally, I would like to express my deep love and recognition by dedicating this work to my parents, a great role model of kindness, patience and strength. I owe them everything that I have today.

CONTENTS

	Page
LIST OF TABLES	IV
LIST OF FIGURES	VI
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	4
2.1 Overview on genus <i>Trichoderma</i>	4
2.1.1 Trichoderma spp. ecological niche & importance	4
2.1.2 <i>Trichoderma</i> spp. isolation	5
2.1.3 <i>Trichoderma</i> spp. preservation	6
2.2 Trichoderma spp. phenotypic characterization	7
2.2.1 Trichoderma morphology	7
2.2.2 Potentiality of <i>Trichoderma</i> as biological control agent	8
(BCA)	
2.2.3 Environmental factors effects on <i>Trichoderma</i> spp.	9
2.3 Genotypic identification of <i>Trichoderma</i> spp.	10
2.4 <i>Trichoderma</i> spp. applications and treatments	11
2.5 <i>Trichoderma</i> spp. and growth promoting plant interactions	12
2.6 <i>Trichoderma</i> spp. role in tolerance against abiotic stresses	14
3. MATERIAL AND METHODS	16
3.1 Samples sources collection and locations	16
3.2 Isolation of <i>Trichoderma</i> spp.	19
3.2.1 Sterilization and precautions	19
3.2.2 Isolation from rhizosphere soil	19
3.2.3 Isolation from seeds:	20
3.3 Long preservation and maintenance of purified	20
Trichoderma isolates	
3.4 Identification of <i>Trichoderma</i> isolates	21
3.4.1 Phenotypic characterization	21
3.4.2 Growth rate	21

3.4.3 Duel culture technique (Antagonism efficiency)	21
3.5 Screening for Abiotic stress tolerance of <i>Trichoderma</i>	22
selected isolates	
3.5.1 Temperature tolerance	22
3.5.2 Salinity tolerance	22
3.5.3 Drought tolerance	23
3.6 Cluster analysis	23
3.7 Microscopic examination and measurements	23
3.8 Identification keys	24
3.9 Molecular characterization	24
3.9.1 Extraction of Genomic DNA of <i>Trichoderma</i> selected	24
isolates	
3.9.2 Species- specific PCR	25
3.9.3 DNA Reagents	26
3.10 pot experiments under abiotic stresses	26
3.10.1 Selected isolates	27
3.10.2 <i>Trichoderma</i> application	27
3.10.3 Soil preparation and Cultivations	28
3.10.3.1 Soil preparation for testing the heat effect	28
3.10.3.2 Soil preparation for testing the salinity effect	28
3.10.3.3 Soil preparation for testing the drought effect	29
3.10.4 Morphological and yield components	29
3.10.5 Chemical analysis	30
3.10.5.1 Estimation of Protein, Carbohydrate and Ash	30
percentages	
3.10.5.2 Determination of Chlorophyll A, Chlorophyll B and	30
Carotenes	
3.10.5.3 Determination of Proline	31
3.11 Statistical analysis and procedures	31
4. RESULT AND DISCUSSION	33
4.1 Distribution and Germplasm collection of <i>Trichoderma</i>	34
4.2 Phenotypic characterization	37

4.2.1 <i>Trichoderma</i> cultural characteristics	37
4.2.2 Growth rate/colony radius	47
4.2.3 Growth Inhibition In- vitro (Dual Culture Technique)	50
4.3 Screening for Abiotic stress tolerance of <i>Trichoderma</i>	57
selected isolates	
4.3.1 Temperature Effect on <i>Trichoderma</i> isolates	57
4.3.2 Salinity Effect on <i>Trichoderma</i> isolates	60
4.3.3 Drought Effect on <i>Trichoderma</i> isolates	63
4.4 Grouping based on phenotypic characterization cluster	66
analysis	
4.5 Identification and Selection of <i>Trichoderma</i> isolates, based	69
on Abiotic stresses screening in vitro	
4.6 Identification using species-specific primers	72
4.7 Pot Experiments	74
4.7.1 Heat Effect Evaluation	74
4.7.2 Salinity Effect evaluation	79
4.7.3 Drought effect evaluation	85
5. SUMMARY	91
5.1 The phenotypic studies of <i>Trichoderma</i> isolates	91
5.2 The Genotypic studies of <i>Trichoderma</i> isolates	92
5.3 The pot experiments under abiotic stresses	92
5.4 Conclusion	93
6. REFERENCES	95