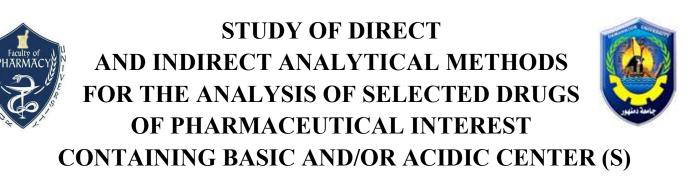


بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / مني مغربي أحمد


بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

1992

1992

ملاحظات: لا يوجد

A Thesis Presented by:

Yasmine Mohamed Abdel Monem Mostafa Khalifa

B. Pharm. Sci., 2011 Faculty of Pharmacy
Pharos University

For Partial Fulfillment for the Degree of Master in Pharmaceutical Sciences
(Analytical Chemistry)

Under the Supervision of:

Dr. Wael Talaat Abd El-Kader

Assistant Professor of Analytical Chemistry

Damanhour University

Dr. Ossama Ali Abdullateef

Assistant Professor of Analytical Chemistry
Pharos University

Dr. Samir Morshedy Mohamed

Lecturer of Analytical Chemistry

Damanhour University

Faculty of Pharmacy
Damanhour University

2022

STUDY OF DIRECT AND INDIRECT ANALYTICAL METHODS FOR THE ANALYSIS OF SELECTED DRUGS OF PHARMACEUTICAL INTEREST CONTAINING BASIC AND/OR ACIDIC CENTER (S)

A Thesis Presented by:

Yasmine Mohamed Abdel Monem Mostafa Khalifa

B. Pharm. Sci., 2011 faculty of Pharmacy Pharos University

For Partial Fulfillment for the Degree of Master in Pharmaceutical Sciences

(Analytical Chemistry)

Advisors' Committee:

	Approval
Dr. Wael Talaat Abd El-Kader	•••••
Assistant Professor of Analytical Chemistry	
Faculty of Pharmacy – Damanhour University	
Dr. Ossama Ali Abdullatif	•••••
Assistant professor of Analytical Chemistry	
Faculty pf Pharmacy – Pharos University in Alexandria	
Dr. Samir Morshedy Mohamed	•••••
Lecturer of Analytical Chemistry	
Faculty of Pharmacy – Damanhour University	

STUDY OF DIRECT AND INDIRECT ANALYTICAL METHODS FOR THE ANALYSIS OF SELECTED DRUGS OF PHARMACEUTICAL INTEREST CONTAINING BASIC AND/OR ACIDIC CENTER (S)

A Thesis Presented by:

Yasmine Mohamed Abdel Monem Mostafa Khalifa

B. Pharm. Sci., 2011 faculty of Pharmacy Pharos University

For Partial Fulfillment for the Degree of Master in Pharmaceutical Sciences

(Analytical Chemistry)

Examiners' Committee:

	<u>Approval</u>
Prof. Dr. Hoda Mohamed Gamal El-Din Dabees Professor of Pharmaceutical Chemistry	••••••
Faculty of Pharmacy – Damanhour University	
Prof. Dr. Ahmed El-Olemy Hassan Allam Assistant professor of Analytical Chemistry	•••••
Faculty of Pharmacy – El-Azhar University in Cairo	
Dr. Ossama Ali Abdullatif	•••••
Assistant professor of Analytical Chemistry	
Faculty of Pharmacy – Pharos University in Alexandria	

Acknowledgments

Infinite thanks to **Allah** for providing me the strength and the ability to learn, create, and resolve in a way that converted a hope to a real piece of scientific research. Thanks for supporting me in difficult times. May this work be a helpful tool for all who will seek it all over the world.

I would like to express my sincere thanks and deepest gratitude to the heads of Pharos University whose support helped me face the difficulties I have encountered during the course of this study. My special gratitude and appreciation are addressed to the head of Drug Research Center for allowing me to use the available resources and facilities.

Millions of words might not be enough to express my deep heart-felt gratitude towards my advisors' committee; the family that gathered smoothly to yield a chain of faithful work with merciful souls and loving hearts.

Thank you, *Asst. Prof. Ossama Ali Abdellatif*, although you did not teach me when I was an undergraduate student, I heard about your brilliant research and great knowledge. Yet, working under your supervision gave me the sincere idea about the ideal professor who always imposes his respect, appreciation and love. I do not know what to say to express my faithful gratitude for your creative thinking, continuous encouragement and active close supervision. Really, I learned from you a lot in both scientific and social sides.

I would like to express my special appreciation and thanks to my advisor *Asst. Prof. Wael Talant Abdelkader Ismail*, you have been a tremendous mentor for me. I would like to thank you for encouraging my research and for allowing me to grow as a research scientist. Your advice on both research as well as on my career have been invaluable. I also want to thank you for letting my defense be an enjoyable moment, and for your brilliant comments and suggestions

Thanks, *Dr. Samir Morshedy*, although these words are not enough. Feeling that an older brother is always supporting me with fair judgment and constructive criticism always gives me a continuous hope and endless enthusiasm. I admit that such professional caring is not given by anyone Moreover, teaching

me during the general and special courses of my master degree gave me an additional idea about your elegant teaching and kind support. Your advice on both research as well as on my career have been invaluable.

Finally, I would like to express my sincere gratitude to *Asst. Prof. Amira Fawzy El-Yazbi*, for her continuous support, motivation, immense knowledge and supplying me with most of the authentics used in this thesis. Her guidance helped me a lot throughout the time of research.

My cordial thanks are acknowledged to the staff members and demonstrators of the department of pharmaceutical analytical chemistry at Damanhour University who considered me as one of them.

I wish to express my deep thanks to my department team (*Prof. Dr. Sobhi Soliman, Prof. Dr. Rim Haggag, Prof. Dr. Rasha Shaalan, Dr. Karin Magdy, Dr. Mohamed Hamdy, Dr. Sameh Younis and Dr. Mona Abdel Moneim*) and my faithful friends, *T.A. Mahmoud Agami*, who sincerely gave me all kinds of support and advice in every step during this degree and never hesitated to help wholeheartedly whenever I asked, I am grateful for everything I learned from you since my first day in the practical work. Thank you, T.*A Yussef El-Shamy* for providing me with advice and reagents whenever I asked. My warmest thanks to my friend *T.A. Heba Hesham*, who stood by my side in the ups and downs of life. Also, I would like to thank all chemists in the drug research lab at Pharos University that helped me a lot during this thesis.

Special and warm thanks go to my dear father, *Eng. Mohamed Khalifa*, my mother, *Mrs. Aida Morsy*, my sister *Eng. Nevine Khalifa* and my cousin *Dr. Helen Soliman* for being by my side all the time. Your infinite support, full patience and understanding are priceless.

Yasmine Khalifa

CONTENTS

PART	ΓΙ	1
	GENERAL INTRODUCTION	1
	I.1. Rheumatoid Arthritis (RA)	1
	I.1.1 Management of RA	2
	A) Disease modifying antirheumatic drugs e.g.: leflunomide	2
	B) Non-steroidal anti-inflammatory drugs (NSAIDs):	3
	I.1.2.Studied Drugs	8
	I.2. Major Depressive Disorder (MDD)	45
	I.2.1. Studied Drugs	48
PART	II	64
	SIMULTANEOUS DETERMINATION OF LEFLUNOMIDE AND SOME NSAIDs I	N
	BULK AND BIOLOGICAL SAMPLE USING A VALIDATED ECO-FRIENDLY HE	PLC-
	BULK AND BIOLOGICAL SAMPLE USING A VALIDATED ECO-FRIENDLY HE DAD METHOD: A STABILITY INDICATING METHOD	
		64
	DAD METHOD: A STABILITY INDICATING METHOD	64 64
	DAD METHOD: A STABILITY INDICATING METHOD II.1. Introduction	64 64
	DAD METHOD: A STABILITY INDICATING METHOD II.1. Introduction II.2. Experimental	64 67
	DAD METHOD: A STABILITY INDICATING METHOD II.1. Introduction II.2. Experimental II.2.1. Instrumentation	64 67 67
	DAD METHOD: A STABILITY INDICATING METHOD II.1. Introduction II.2. Experimental II.2.1. Instrumentation II.2.2. Materials and reagents	64 67 67 67 68
	II.1. Introduction. II.2. Experimental. II.2.1. Instrumentation. II.2.2. Materials and reagents. II.2.3. Preparation of standard stock solutions	64 67 67 67 68
	II.1. Introduction II.2. Experimental II.2.1. Instrumentation II.2.2. Materials and reagents II.2.3. Preparation of standard stock solutions II.2.4. General procedure	64 67 67 67 68 68

	72	DEI m iat serum
	II.3. Results and discussion	74
	II.3.1. Optimization and method development	74
	II.3.2. Stability-indicating aspects	79
	II.3.3. Analytical Validation	98
	II.3.4. Application to spiked rat serum samples	114
	II.3.5. Application to in-vivo assay	121
	II.4. Conclusion	125
PART 1	ш	126
	SPECTROFLUOROMETRIC DETERMINATION OF VILAZODONE, T	IANEPTINE
	AND AGOMELATINE IN THEIR DOSAGE FORM	126
	AND AGOMELATINE IN THEIR DOSAGE FORM	
		126
	III.1. Introduction	126
	III.1. Introduction	126 128
	III.1. Introduction III.2. Experimental III.2.1. Instrumentation	
	III.1. Introduction III.2. Experimental III.2.1. Instrumentation III.2.2. Materials and reagents	
	III.1. Introduction III.2. Experimental III.2.1. Instrumentation III.2.2. Materials and reagents III.2.3. Preparation of standard stock solution	
	III.1. Introduction III.2. Experimental III.2.1. Instrumentation III.2.2. Materials and reagents III.2.3. Preparation of standard stock solution III.2.4. Spectrofluorimetric procedure and construction of calibration curves	
	III.1. Introduction III.2. Experimental	

		III
	III.3.3. Validation of the proposed spectrofluorimetric method	137
	III.3.4. Assay of pharmaceutical formulation	145
	III.4. Conclusion	147
PART 1	IV	148
	ZERO AND FIRST ORDER DERIVATIVE SPECTROPHOTOMETRIC	
	DETERMINATION OF VILAZODONE, AGOMELATINE AND TIANEPTINE IN	
	PHARMACEUTICAL DOSAGE FORM	148
	IV.1. Introduction	148
	IV.2. Experimental	149
	IV.2.1. Instrumentation	149
	IV.2.2. Materials and reagents	149
	IV.2.3. Preparation of standard stock solution	149
	IV.2.4. Spectrophotometric procedure and construction of calibration curves	150
	IV.2.5. Pharmaceutical preparations	150
	IV.2.6. Tablet Extraction Procedure	150
	IV.3. Results and Discussion	152
	IV.3.1. Determination of VLZ and AGO by applying zero (D ⁰) and first (D ¹) derivati	ive UV-
	visible spectroscopy	152
	IV.3.2. Determination of TIA by applying zero (D ⁰) and first (D ¹) derivative UV	-visible
	spectroscopy	152
	IV.3.3. Validation of the proposed methods	166
	IV.3.4. Stability	170
	IV.3.5. Assay of pharmaceutical formulation	171

	IV
IV.4. Conclusion	
SUMMARY	
References	177
ARABIC SUMMARY	203
الملخص العربي	1

LIST OF ABBREVIATIONS

a	Intercept
ACE	Aceclofenac
ACN	Acetonitrile
AGO	Agomelatine
A _{max}	Maximum absorbance
ANOVA	Analysis of variance test
API	Active pharmaceutical ingredient
b	slope
BD	Becton Dickinson
BP	British Pharmacopeia
CE	Capillary electrophoresis
CNS	Central nervous system
COX	Cyclooxygenase
CZE	Capillary zone electrophoresis
DHODH	dihydroorotate dehydrogenase enzyme
DIC	Diclofenac sodium
DLLME	Dispersive liquid—liquid microextraction
DMARD	Disease modifying antirheumatic drug
E _r (%)	Percentage relative error
EME	Electromembrane extraction
ESI	Electrospray Ionization

F	Variance ratio test
HPLC	High performance liquid chromatography
HPLC-DAD	High performance liquid chromatography with diode array detection
HPLC-FD	High performance liquid chromatography with fluorescence detection
HPLC-MS/MS	High performance liquid chromatography-tandem mass spectrometry
HPLC-UV	High performance liquid chromatography with ultraviolet detection
HPTLC	High performance thin layer chromatography
ICH	International Conference on Harmonization
IS	Internal standard
k'	Capacity factor
KET	Ketoprofen
LC	Liquid chromatography
LC-MS/MS	Liquid chromatography tandem mass spectrometry
LEF	Leflunomide
LOD	Limit of detection
LOQ	Limit of quantitation
MAOI	Monoamine oxidase inhibitor
MDD	Major depressive disorder
MeOH	Methanol
min	Minute
N	Number of theoretical plates
NAP	Naproxen
NSAID	Non-steroidal anti-inflammatory drug

PG	Prostaglandin
PIR	Piroxicam
r	Correlation coefficient
RA	Rheumatoid artritis
RIMA	Reuptake inhibitor of monoamine oxidase inhibitor A
rpm	Revolution per minute
RP-HPLC	Reversed-phase High performance liquid chromatography
RP-UPLC	Reversed-phase Ultra performance liquid chromatography
Rs	Resolution
RSD (%)	Percentage relative standard deviation
S^2	Variance
Sa	Standard deviation of intercept
S_b	Standard deviation of slope
S _b %	RSD% of the slope value
S _{y/x}	Standard deviation of residuals
SD	Standard deviation
SIAM	Stability-indicating assay method
SNRI	Serotonin and noradrenaline reuptake inhibitor
SSRI	Selective serotonin reuptake inhibitor
tr	Retention time
TCA	Tricyclic antidepressant
TIA	Tianeptine
TLC	Thin layer chromatography

VIII

TOL	Tolmetin
TXA2	Thromboxane A2
UHPLC	Ultra-high-performance liquid chromatography
UHPLC-MS/MS	Ultra-high-performance liquid chromatography tandem mass
	spectrometry
UPLC	Ultra-performance liquid chromatography
UPLC/Q-TOF-	Ultra-performance liquid chromatographic/quadrupole time-of-flight
MS	mass spectrometry
USP	United states pharmacopoeia
UV	Ultraviolet
VLZ	Vilazodone
α	Selectivity
λ _{max}	Wavelength of maximum absorbance

LIST OF TABLES

Table 1: Gradient program used in the proposed HPLC-DAD method	69
Table 2: Summary of degradation studies of PIR, TOL, KET, NAP, ACE, DIC a	nd LEF using
the proposed HPLC method.	82
Table 3:Analytical parameters for the determination of PIR, TOL, KET, NA	P, ACE, DIC
and LEF respectively by HPLC	99
Table 4: Precision and accuracy results for the analysis of PIR, TOL, KET, NA	AP, ACE, DIC
and LEF mixture using the proposed HPLC-DAD.	108
Table 5: System suitability parameters for the separated compounds in the pro	posed HPLC-
DAD method.	111
Table 6: Evaluation of robustness of the proposed HPLC-DAD.	112
Table 7: Analytical parameters for the determination of DIC and LEF in ser	um using the
proposed HPLC-DAD method.	117
Table 8: Accuracy and precision results for the determination of DIC and LEF	in spiked rat
serum using the proposed HPLC-DAD method.	120
Table 9: Assay results of serum obtained from 6 rats after oral administration	n of 10 mg/kg
and 4 mg/kg body weight of DIC and LEF, respectively	124
Table 10: Regression analysis and test results for the determination of each	drug by the
proposed spectrofluorimetric method.	143
Table 11: Intraday and inter day accuracy and precision for the determination	n of the three
drugs by the proposed spectrofluorimetric method.	144
Table 12: Recovery study of tablets by applying standard addition technique	146