

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

CLINICAL OUTCOMES FOR PATIENTS WITH ACUTE MYELOID LEUKEMIA HARBORING IDH'I MUTATION AFTER INTENSIVE CHEMOTHERAPY

Thesis

Submitted for Partial Fulfillment of Master Degree In Clinical Hematology

By
John Ahdi Saweris

(M.B., B. Ch.) 2013 Faculty of Medicine - Ain Shams University

Supervised by

Prof. Dr. Mohamed Osman Azzazi

Professor of Internal Medicine and Clinical Hematology Faculty of Medicine - Ain Shams University

Prof. Dr. Walaa Ali El Salakawy

Professor of Internal Medicine and Clinical Hematology Faculty of Medicine - Ain shams University

Dr. Nour El HodaHussien Abdalla

Lecturer of Internal Medicine and Clinical Hematology Faculty of Medicine - Ain shams University

Faculty of Medicine
Ain Shams University
2022

List of Contents

Ti	tle	Page	
•	List of Abbreviations	. I	
•	List of Tables	. III	
•	List of Figures	. VI	
•	Introduction	•	
•	Aim of the Work	•	
•	Review of Literature		
	- Chapter (1): Acute Myeloid Leukemia	. 4	
	- Chapter (2): Isocitrate Dehydrogenase Mutations in Myeloid Malignancies	. 28	
•	Patients and Methods	. 58	
•	Results	. 74	
•	Discussion	. 89	
•	Summary	. 99	
•	Conclusion	•	
•	References	•	
•	Arabic Summary		

List of Abbreviations

Al	bb.		Full term
•	2HGD	•	2-hydroxyglutarate dehydrogenases
•	AML	•	Acute myeloid leukemia
•	APL	•	Acute promyelocytic leukemia
•	ASXL1	•	Additional sex comb-like 1 mutations
٠	ATO	•	Arsenic trioxide
•	ATRA	•	All-trans retinoic acid
•	CBFA2	•	Core-binding factor subunit-2
•	CBFB	•	Core binding factor beta subunit
•	CD	•	Common differentiation
•	CEBPA	•	Ccaat enhancer binding protein
•	CIBMTR .	•	Center of international blood and marrow
			transplant research
•	CN-AML.	•	Cytogenetically normal
•	CR	•	Complete remission
•	DFS	•	Disease free survival
•	DIC	•	Disseminated intravascular coagulation
•	DNMT3A	•	Dna methyltansferase 3a mutations
•	ELN	•	European leukemianet
•	EVI1	•	Ecotropic virus integration site 1
•	FAB	•	French-american- british classification
•	FLT3	•	Fms-like tyrosine kinase 3 mutations
•	HLADR	•	Human leukocyte antigen-antigen d related
•	HMAs	•	Hypomethylating agents
•	HRM	•	High resolution melt

- HSCT Hematopoietic stem cell transplantation IDHs..... Isocitrate dehydrogenases ITD..... Internal tandem duplications JAK2 The janus kinase 2 gene JM Juxta-membrane ■ L-2HG..... L-2-hydroxyglutarate enantiomer MDS Myelodysplastic syndrome MLL Mixed lineage leukemia MPD..... Myeloid proliferative disorder MPL Myeloproliferative leukemia MRD Minimal residual leukemia MYH11... Smooth muscle myosin heavy chain 11 NADPH... Nicotinamide adenine dinucleotide phosphate NGS..... Next generation sequencing NPM1..... Nucleophosmin 1 OS Overall survival PCR Polymerase chain reaction PHDs..... Prolyl hydroxylases PML-Promyelocytic leukemia/retinoic acid receptor RARA alpha PTD Partial in tandem duplications RUNX1... Runt-related transcription factor
 - Therapy-related amlTerminal deoxynucleotidyl transferase

RUNX1T1

SRSF2

t-AML

TdT.....

Runx1 partner transcriptional co-repressor 1

Serine/ arginine-rich- splicing-factor-2 gene

- TET2 Ten–eleven translocation 2
- TKD Tyrosine kinase domain
- TKI..... Tyrosine kinase inhibitors
- UK NCRC United kingdom national cancer research institute
- WT1 Wilms' tumor 1 gene
- α-KG A-ketoglutarate

List of Tables

Table No.	Title	Page
Table (1):	ELN risk stratification of molecular, genetic and cytogenetic alterations	
Table (2):	Summary of frequencies of IDH1 and IDH2 mutations in adult and pediatric patients	[
Table (3):	Frequencies of common recurrent gene mutations in adults with AML or MDS	,
Table (4):	Demographic data for all the studied patients	
Table (5):	The mean age was 40.93±12.75 SD with range (19-60)	
Table (6):	FAB Classification of all studied patients	
Table (7):	Clinical and laboratory characteristics of the studied patients	
Table (8):	Clinical and laboratory characteristics of the studied patients	
Table (9):	Risk classification according to cytogenetics and IDH1 mutation in all studied patients	L
Table (10):	Chemotherapy protocols & Response and 6 months outcome in all studied patients	[

List of Tables (Continued)

Table No.	Title	Page
Table (11):	Chemotherapy protocols & Response and 6 months outcome in all studied patients	l
Table (12):	Association between IDH1 mutation and demographic data for all the studied patients)
Table (13):	Chemotherapy protocols & Response and 6 months outcome in all studied patients	l
Table (14):	Association between IDH1 mutation and FAB Classification of all studied patients	l
Table (15):	Association between IDH1 mutation and clinical and laboratory characteristics of the studied patients	7 L
Table (16):	Association between IDH1 mutation and FAB Classification of all studied patients	l
Table (17):	Association between IDH1 mutation and Risk classification according to cytogenetics in all studied patients)
Table (18):	Association between IDH1 mutation and Chemotherapy protocols & Response and 6 months outcome in all studied patients	; l

List of Tables (Continued)

Table No.	Title	Page
Table (19):	Association between IDH1 mutation and FAB Classification of all studied patients	l
Table (20):	Mean survival as regard time to complete remission and lines of chemotherapy	f
Table (21):	Mean survival as regard time to death and lines of chemotherapy	
Table (22):	Mean survival as regard time to complete remission and IDH1 mutation	-
Table (23):	Mean survival as regard time to death and IDH1 mutation	

List of Figures

Figure No.	Title	Page
Fig. (1):	IDH mutations in cancer	29
Fig. (2):	Location of IDH2 mutation may influence prognosis in AML	
Fig. (3):	(R)-2-HG level may serve as a biomarker of prognosis and treatment effects	1
Fig. (4):	Detection of IDH mutations by Sanger sequencing	
Fig. (5):	Two enantiomers, D-2HG and L-2HG, measured by liquid chromatography-tandem mass spectrometry	1 s
Fig. (6):	HRM Difference Plot	62
Fig. (7):	Software scheme for new experiment	65
Fig. (8):	Thermal cycle steps in HRM	69
Fig. (9):	Melt Curve Tab, High Resolution Melt	
Fig. (10):	Examples of HRM results	73
Fig. (11):	Distribution of the studied cases according to sex	
Fig. (12):	Distribution of the studied cases according to FAB classification	
Fig. (13):	Distribution of the studied cases according to TLC, HB and PLTs	
Fig. (14):	Distribution of the studied cases according to TLC, HB and PLTs	

List of Figures (Continued)

Figure No.	Title Page
Fig. (15):	Mean survival as regard time to complete remission and lines of chemotherapy
Fig. (16):	Mean survival as regard time to death and lines of chemotherapy86
Fig. (17):	Mean survival as regard time to complete remission and IDH1 mutation
Fig. (18):	Mean survival as regard time to death and IDH1 mutation

INTRODUCTION

Acute myeloid leukemia (AML) is heterogeneous myeloid disorder with multifactorial pathogenic mechanisms and a broad range of prognosis. AML is characterized by clonal proliferation of poorly differentiated cells of the myeloid lineage (*Dohner et al.*, 2015).

The pathogenesis involve recurrent genomic alterations, including somatic gene mutations and/or chromosomal abnormalities, that can define biologically distinct clinical subtypes (*Vardiman et al.*, 2009).

Comprehensive genomic profiling at the time of diagnosis can inform disease classification, risk stratification and prognosis and ultimately allow for more selective therapeutic interventions. Alterations to cellular metabolism, as well as somatic mutations of genes essential to epigenetic regulation, are implicated in the pathogenesis of several human malignancies(*Cairns et al., 2011; Conway et al., 2014*).

Isocitrate dehydrogenases (IDHs) are homodimeric enzymes involved in diverse cellular processes, including adaptation to hypoxia, histone demethylation and DNA modification(*Clark et al.*, *2016*).

IDH1 protein catalyze the oxidative decarboxylation of isocitrate to α -ketoglutarate (α -KG) to produce reduced nicotinamide adenine dinucleotide phosphate.

Diverse dioxygenases depend on sufficient levels of α -KG for multiple cellular processes, as well as for epigenetic regulation (*Molenaar et al.*, 2014).

IDH1 enzymes are localized to the cytoplasm and peroxisomes (*Clark et al.*, 2016).

Somatic mutations in IDH1 (mIDH1) genes have been described in both solid and hematological malignancies (*Stein*, 2016).

IDH1mutations are heterozygous, retaining one wild-type, suggestive of an oncogenic gain of function. IDH proteins are encoded by the IDH1 gene located at chromosome 2q33. Recurrent IDH1 mutations are missense variants leading to a single amino-acid substitution of arginine residues at codon 132 in exon 4 of the IDH1 gene. Additionally, a germline-synonymous single-nucleotide polymorphism (rs11554137) located in codon 105 in exon 4 of the IDH1 gene has been reported to have prognostic relevance in AML(*Willander et al., 2014; Wagner et al., 2010*). In our study we will provide an overview of the Clinical Outcomes for Patients with Acute Myeloid Leukemia Harboring IDH1 mutation after Intensive Chemotherapy.

AIM OF THE WORK

The aim of the present study is to detect IDH1 Mutation in adult Egyptian AML patient and find correlation between the mutation and prognosis & survival in those patients after intensive chemotherapy.

Chapter (1) Acute Myeloid Leukemia

I. Introduction

Acute myeloid leukemia (AML) is a heterogeneous disorder characterized by clonal expansion of myeloid progenitors (blasts) in the bone marrow and peripheral blood. Previously incurable, AML is now cured in approximately 35%-40% of patients younger than age 60 years old. For those >60 years old, the prognosis is improving but remains grim. Studies have revealed that the disorder arises from a series of recurrent hematopoietic stem cell genetic alterations accumulated with age. Using deep sequencing techniques on primary and relapsed tumors, a phenomenon called clonal evolution has been characterized with both founding clones and novel subclones, impacting the therapeutic approach. Despite an increased understanding of AML biology, our efforts to this point in changing treatment strategy have been disappointing. In this review, we discuss the current diagnostic and prognostic strategies, current treatment approaches and novel therapies critical to AML management (Khwaja et al., 2016).

II. Morphology

Morphologically, AML blasts vary in size from slightly larger than lymphocytes to the size of monocytes or larger. The nuclei are large in size, varied in shape and usually contain several nucleoli. AML blasts express