

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

DESIGN OF GEOPOLYMER COMPOSITES FOR 3D PRINTING APPLICATIONS

By

Passant Ahmed Mohamed Mohamed Youssef

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
Structural Engineering

DESIGN OF GEOPOLYMER COMPOSITES FOR 3D PRINTING APPLICATIONS

By **Passant Ahmed Mohamed Mohamed Youssef**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY in Structural Engineering

Under the Supervision of

Prof. Dr. Ahmed M. Ragab

.....

Professor of Strength of Materials
Civil Department
Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2022

DESIGN OF GEOPOLYMER COMPOSITES FOR 3D PRINTING APPLICATIONS

By **Passant Ahmed Mohamed Mohamed Youssef**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY in

Structural Engineering

Approved by the Examining Committee

Prof. Dr. Ahmed Mahmoud Maher Ragab, Thesis Main Advisor

Prof. Dr. Osama Abdel-Ghafour Hodhod, Internal Examiner

Dr. Muhammad Samy El-Feky, External Examiner

- Assistant Professor, Civil Engineering Department, National Research Center

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2022 **Engineer's Name:** Passant Ahmed Mohamed Youssef

Date of Birth: 20/09/1990 **Nationality:** Egyptian

E-mail: passant.youssef@yahoo.com

Phone: 002-0128-521-9445

Address: No. 49, El-Oroba St., Haram, Giza, Egypt.

Registration Date: 01/10/2016 **Awarding Date:**/2022

Degree: Doctor of Philosophy **Department:** Structural Engineering

Supervisors:

Prof. Dr. Ahmed M. Ragab

Examiners:

Prof. Dr. Ahmed M. Ragab (Thesis main advisor)

Prof. Dr. Osama Abdel-Ghafour Hodhod (Internal examiner)

Dr. Muhammad Samy El-Feky (External examiner)

 Assistant Professor - Civil Engineering Department -National Research Center

Title of Thesis:

Design of Geopolymer Composites for 3D Printing Application

Keywords:

Slag; Metakaolin; Geopolymer; 3D Printing; Additive Manufacturing

Summary:

The overall objective is to propose a design methodology for a geopolymer concrete mix that can be used in the 3D printing process. The effect of size and type of fine aggregate, type of binder (either slag or metakaolin) and ratio (slag: metakaolin) and quantity and proportion of alkali solution (NaOH: Sodium Hydroxide) was studied. Sodium silicate) on the specified setting time and mechanical strength development according to the technical specifications of the 3D printing machine and finally improving the workability, extrusion and open time to achieve the flowability, shape retention and buildability of geopolymer composites for 3D printing.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Passant Ahmed Mohamed Mohamed Youssef Date: ../../2022

Signature:

Dedication

To my mom

The reason of what I become today; who taught me to trust Allah and believe in myself. Your prayers always surround me and give me the strength to never give up. All the love and respect to you for your support.

To my dad's soul

For the living memory; although I didn't get the chance to live with you these moments, your presence is still felt in my heart and your character imprinted in my personality.

To Prof. Dr. Mohamed I. Serag

I'm grateful for your valuable advice and continuous support during my study. Your immense knowledge and plentiful experience have encouraged me in all the time of my academic research and daily life.

Acknowledgments

To begin, and most importantly, I want to express my gratitude to Allah for this beautiful opportunity that I have right now. I appreciate God for allowing me to meet such friendly and helpful individuals who have aided me from the beginning of my thesis. All gratitude is due to Allah to bestow the knowledge, strength, support, and patience necessary to complete this job.

I want to convey my heartfelt appreciation to my respected supervisor, Prof. Dr. Ahmed M. Ragab, for the privilege of being one of their students. Furthermore, I am grateful for the continual advice and support throughout this thesis and the direction, concern, patience, and considerable effort made to create an ideal environment for doing this study.

I express my gratitude to Dr. Muhammad S. El-Feky for his tolerance, encouragement, and intense concern for the work's efficiency. He provided me with invaluable knowledge and spent much time training me on data collection and thesis writing and making essential ideas concerning the experimental program. I've been fortunate to work under his direction.

I'm thankful to my research team colleague, Dr. Ahmed El-Tair. He had been helpful in providing advice many times during my study. His invaluable assistance and insights leading to the implementation of this experimental program. I'm thankful for providing opportunities for me to grow professionally.

I would also want to convey my heartfelt gratitude to my lovely family members for motivating and encouraging me to continue pursuing my ambitions with their support, love and patience. This journey would not have been possible if not with my family. I'm forever indebted to my parents for giving me the opportunities that have made me who I am. I'm grateful to my sisters for always being there for me. I'm thankful for my husband for encouraging me to explore new directions in life. Thank you all for believing in me; all my love and appreciation for you.

I would like to thank my close friends. They are all my treasure in my life. The emotional support you always give to me is so precious; blessed for having you.

Finally, I would like to express my gratitude for the assistance and efforts of lab technicians who assisted in conducting the experimental thesis work; as well as the German University in Cairo and the National Research Center for providing me with the facilities and manpower necessary to carry out the research experimental plan and enabling me to complete this research.

Table of Contents

DISCL	AIMER	I
DEDIC	ATION	II
ACKNO	OWLEDGMENTS	III
TABLE	OF CONTENTS	IV
LIST O	F TABLES	VI
LIST O	F FIGURES	VIII
ABSTR	ACT	XI
CHAP	TER 1: INTRODUCTION	1
1.1.	GENERAL	1
1.2.	MOTIVATION	
1.3.	OBJECTIVES	
1.4.	SCOPE OF WORK	
1.5.	THESIS LAYOUT	
151	CHAPTER 1: INTRODUCTION	
	CHAPTER 2: LITERATURE REVIEW	
	CHAPTER 3: EXPERIMENTAL PLAN	
	CHAPTER 4: RESULTS AND DISCUSSION	
1.5.5.	CHAPTER 5: SUMMARY, CONCLUSION AND RECOMMENDATION	3
CHAP	TER 2 : BACKGROUND & LITERATURE REVIEW	4
2.1.	GEOPOLYMER VS. CONCRETE	6
2.1.1.	ENVIRONMENTAL IMPACT	6
	COMPRESSIVE STRENGTH	
2.1.3.	FLEXURAL AND TENSILE STRENGTH	8
2.1.4.	DENSITY AND POROSITY	8
2.1.5.	SHRINKAGE AND CREEP	8
2.2.	INNOVATION OF 3D PRINTING	8
2.3.	LITERATURE REVIEW	11
2.3.1.	3D PRINTING OF CEMENT-BASED CONCRETE	12
.2.3.2	3D PRINTING OF GEOPOLYMER-BASED CONCRETE	14
2.3.3.	INFLUENCE OF SLAG AND METAKAOLIN IN GEOPOLYMER	17
2.4.	CONCLUDING REMARKS	21

CHAP	TER 3	: EXPERIMENTAL PROGRAM	22
3.1.	GEN	ERAL	22
3.2.	OVE	RVIEW OF EXPERIMENTAL PROGRAM	23
3.2.1	. CHAR	ACTERIZATION OF USED MATERIALS	23
3.2.2	2. SAMP	LES PREPARATION	25
3.2.3	CALC	ULATIONS OF MIX PROPORTION	28
3.2.4	Mixi	NG PROCEDURE	28
3.2.5	CHAR	ACTERIZATION, TESTING AND ANALYSIS	29
3.2	2.4.1.	Characterization	29
3.2	2.4.2.	Testing	30
3.2	2.4.3.	Analysis	33
СНАР	TER 4	: RESULTS AND DISCUSSION	34
4.1.	INTF	RODUCTION	34
4.2.	INVI	ESTIGATING THE OPTIMUM MIX BASED ON FRESH	
STAT	E AND	MECHANICAL PROPERTIES 34	
4.2.1	. Fresi	H PROPERTIES TESTS	34
4.2.2	2. Hari	DENED PROPERTIES TESTS	44
4.2.3	3. MICR	OSTRUCTURE ANALYSIS	61
4.2.4	STAT	ISTICAL ANALYSIS OUTCOMES	66
4.2	2.4.1.	Conditional sums of squares, and analysis of variance	66
4.2	2.4.2.		
	tervals	68	
	2.4.3.	Test for outliers and unusual residuals	
4.2	2.4.1.	Actual/predicted design charts	75
4.3.	OPT	IMIZE THE EXTRUDABILITY, THIXOTROPIC OPEN	
TIME	, SHAP	E RETENTION AND BUILDABILITY FOR 3D PRINTING	 78
DISCU	JSSION	N AND CONCLUSIONS	82
RECO	MME	NDATIONS	84
REFE	RENCI	ES	86

List of Tables

Table 3.1 Chemical constituent of slag (wt. %)	3
Table 3.2 Chemical composition of sodium silicate	4
Table 3.3 Chemical composition of sodium hydroxide	5
Table 3.4: Constituents of geopolymer samples of group 1	6
Table 3.5 Constituents of geopolymer samples of group 2	7
Table 3.6 Constituents of geopolymer samples of group 3	7
Table 3.7 Constituents of geopolymer samples in phase 2	8
Table 3.8: Data entry on the testing machine for the compressive strength test	1
Table 3.9 Data entry on the testing machine for the flexure strength test	3
Table 4.1 Compressive strength at 7 & 28 days for group A and B	8
Table 4.2 Compressive strength at 7 and 28 days for group C and D	9
Table 4.3 Compressive strength at 7 and 28 days for group E and F	1
Table 4.4 Compressive strength at 7 and 28 days for mixes with 0% superplasticizer	3
Table 4.5 Compressive strength at 7 and 28 days for mixes with 0.25% superplasticizer 54	4
Table 4.6 Compressive strength at 7 and 28 days for mixes with 0.5% superplasticizer 5.	5
Table 4.7 Compressive strength at 7 and 28 days for mixes with 0.75% superplasticizer 50	6
Table 4.8 Sum up groups properties 60	0
Table 4.9 Compressive strength at 7 summary of Fit	7
Table 4.10 Compressive strength at 28 summary of Fit	7
Table 4.11 Flexure strength at 28 summary of Fit	8
Table 4.12 Flowability summary of Fit	8
Table 4.13 Setting time summary of Fit	8
Table 4.14 Density summary of Fit	8
Table 4.15 Dry shrinkage summary of Fit	8

Table 4.16 Compressive strength at 7 parameter estimates	69
Table 4.17 Compressive strength at 28 parameter estimates	69
Table 4.18 Flexure strength at 28 parameter estimates	69
Table 4.19 Flowability parameter estimates	69
Table 4.20 Setting time parameter estimates	70
Table 4.21 Density parameter estimates	70
Table 4.22 Dry shrinkage parameter estimates	70
Table 4.23 Compressive strength of mixes in phase 2	79
Table 4.24 Trials	80

List of Figures

Figure 2.1 SEM images of MK (a), SF (b) and BFS (c) particles
Figure 2.2 Embodied energy contribution of each material on fly ash-GGBS geopolymer concrete [28]
Figure 2.3 Embodied energy contribution of each material on OPC concrete [28]7
Figure 2.4 Contour crafting9
Figure 2.5 WinSun China build world's first tallest 3D printed apartment building [62] and BigDelta project of a 3D printed castle [63]
Figure 2.6 Testing directions [2]
Figure 2.7 Relation between alkali content and compressive strength for various curing conditions [82]
Figure 2.8 Compressive strengths of alkali silicate-activated concretes as a function of the binder content. Error bars represent one standard deviation [83]
Figure 2.9 Effect of Na2O concentration on final setting time [84]
Figure 2.10 Effects of Na2O concentration on 28-day compressive strength development at 95% R.H. at 25° [84]
Figure 3.1 Grinded Ground Granulated Blast Furnace Slag
Figure 3.2 XRD analysis of Grinded Ground Granulated Blast Furnace Slag
Figure 3.3 Chemical structure of PFS
Figure 3.4 Schematic diagram showing differences between mixing sequences
Figure 3.5 QUANTA scanning electron microscope used for analysis
Figure 3.6 Flowability test experimental setup (a) before the mold is removed (b) the spread of the material after dropping the table for 25 times
Figure 3.7 Vicat appartus
Figure 3.8 ELE testing machine
Figure 3.9 Universal testing machine SHIMADZU 1000 KN
Figure 4.1 Density
Figure 4.2 Flowability for group A and B
Figure 4.3 Flowability for group C and D

Figure 4.4 Flowability for group E and F
Figure 4.5 Flowability for mixes with superplasticizer content 0% (a), 0.25% (b), 0.5% (c) and 0.75% (d)
Figure 4.6 Initial setting time for group A and B
Figure 4.7 Initial setting time for group C and D
Figure 4.8 Initial setting time for group E and F
Figure 4.9 Initial setting time for mixes with superplasticizer content 0% (a), 0.25% (b), 0.5% (c) amd 0.75% (d)
Figure 4.10 Dry shrinkage after 4, 11, 18 and 25 days for groups A (a), B (b), C (c), D (d), E (e) and F (f)
Figure 4.11 Compressive strength for group A and B after 7 (a) and 28 (b) days
Figure 4.12 Compressive strength for group C and D after 7 (a) and 28 (b) days
Figure 4.13 Compressive strength for group E and F after 7 (a) and 28 (b) days
Figure 4.14 Compressive strength for mixes with 0% superplasticizer after 7 (a) and 28 (b) days53
Figure 4.15 Compressive strength for mixes with 0.25% superplasticizer after 7 (a) and 28 (b) days
Figure 4.16 Compressive strength for mixes with 0.5% superplasticizer after 7 (a) and 28 (b) days
Figure 4.17 Compressive strength for mixes with 0.75% superplasticizer after 7 (a) and 28 (b) days
Figure 4.18 Flexure strength after 28 days flexure strength for groups A and B (a), C and D (b), E and F (c)
Figure 4.19 Flexure strength after 28 days for mixes with superplasticizer content 0% (a), 0.25% (b), 0.5% (c) and 0.75% (d)
Figure 4.20 SEM of mix with 100% slag & 0% superplasticizer (mix B5), $10um(a)$, $20um(b)$. 61
Figure 4.21 SEM of mix with 100% MK & 0% superplasticizer (mix F21), 10um (a), 20um (b) 62
Figure 4.22 SEM of mix with 50% slag, 50% MK & 0% superplasticizer (mix D13), 10um (a), 20um (b)
Figure 4.23 SEM of mix with 50% slag, 50% MK & 0.25% superplasticizer (mix D14), 10um (a), 20um (b)
Figure 4.24 TGA of mix with 100% slag & 0% superplasticizer (mix B5)
Figure 4.25 TGA of mix with 100% MK & 0% superplasticizer (mix F21)
Figure 4.26 TGA of mix with 50% slag, 50% MK & 0% superplasticizer (mix D13)

Figure 4.27 TGA of mix with 50% slag, 50% MK & 0.25% superplasticizer (optimum mix D14)
Figure 4.28 Actual by predicted plot for density
Figure 4.29 Whole Model Actual by residual for density
Figure 4.30 Actual by predicted plot for flowability
Figure 4.31 Whole Model Actual by residual for flowability
Figure 4.32 Actual by predicted plot for initial setting time
Figure 4.33 Whole Model Actual by residual for initial setting time
Figure 4.34 Actual by predicted plot for dry shrinkage
Figure 4.35 Whole Model Actual by residual for dry shrinkage
Figure 4.36 Actual by predicted plot for 7 days compressive strength
Figure 4.37 Whole Model Actual by residual for compressive strength at 7 days
Figure 4.38 Actual by predicted plot for 28 days compressive strength
Figure 4.39 Whole Model Actual by residual for compressive strength at 28 days
Figure 4.40 Actual by predicted plot for 28 days flexure strength
Figure 4.41 Whole Model Actual by residual for flexure strength at 28 days
Figure 4.42 Prediction profiler for density
Figure 4.43 Prediction profiler for flowability
Figure 4.44 Prediction profiler for initial setting time
Figure 4.45 Prediction profiler for dry shrinkage
Figure 4.46 Prediction profiler for 7 days compressive strength
Figure 4.47 Prediction profiler for 28 days compressive strength
Figure 4.48 Prediction profiler for 28 days flexure strength
Figure 4.49 3 layers/1 minute gap
Figure 4.50 4 layers/0 minute gap
Figure 4.51 4 layers/3 minutes gap
Figure 4.52 4 layers/5 minutes gap
Figure 4.53 Different trials of printing