

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / مني مغربي أحمد

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

1992

1992

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT

Unmanned Aerial Vehicles in 5G

A Thesis

Submitted in Partial Fulfillment of the Requirements of the Degree of Doctor of Philosophy

Submitted by:

Nour El-Din Safwat Saad Mohamed Mansour

M.Sc. of Electrical Engineering
Electronics and Communication Engineering Department
Ain Shams University, 2014

Under the supervision of:

Prof. Dr. Ismail Mohammed Hafez

Electronics and Communication Department Faculty of Engineering Ain Shams University

Dr. Fatma Newagy

Electronics and Communication Department
Faculty of Engineering
Ain Shams University

Cairo, 2022

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT

Unmanned Aerial Vehicles in 5G

Ph.D. Thesis

Name	Nour El-Din Safwat Saad Mohamed Mansour
Thesis	Unmanned Aerial Vehicles in 5G

Degree Doctor of Philosophy in Electrical Engineering

Department Electronics and Communication

Examiners' Committee	
Name and Affiliation	Signature
Prof.Dr. Hebat-Allah Mostafa Mourad	
Electronics and Communications DepartmentFaculty of	
Electronic Engineering - Cairo University	
Name and Affiliation	Signature
Prof.Dr. Wagdy Refaat Anis	
Electronics and Communications Department Faculty of	
Engineering - Ain Shams University	
Name and Affiliation Signature	Signature
Prof.Dr. Ismail Mohamed Hafez	
Electronics and Communications Department Faculty of	
Engineering - Ain Shams University	
Name and Affiliation Signature	Signature
Name and Affiliation Signature Dr. Fotma Abdol Karim Nawagy	
Dr. Fatma Abdel-Karim Newagy	
Electronics and Communications Department Faculty of	

Date of Examination: 28⁻May-202

Engineering - Ain Shams University

Statement

This thesis is submitted as a partial fulfillment of Doctor of Philosophy in Electrical Engineering (Electronics and Communications), Ain Shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Nour El-Din Safwat Saad Mohamed

Date: / / 2020

Acknowledgment

All praises and thanks are to Allah for allowing me to start and complete this work.

I would like to express my special appreciation and thanks to my advisors Professor Prof.Dr. Ismail Mohammed Hafez, and Prof.Dr. Fatma El-newagy, you have been tremendous mentors for me. I would like to thank you for encouraging my research and for allowing me to grow as a research scientist. Your advice on both research as well as on my career has been priceless. I would also like to thank my committee members, professor Prof.Dr. Hebat-Allah Mourad, and Prof.Dr.Wagdy anis for letting my defense be an enjoyable moment, and for your brilliant comments and suggestions, thanks to you.

I would especially like to my colleagues and friends for their support and help during my thesis.

A special thanks to my family. Words cannot express how grateful I am to my father, my mother, my beloved wife, and my children for your support and prayer for me.

Researcher Data

Name : Nour El-Din Safwat Saad Mohamed

Date of birth : 03-Nov-1986

Last academic : Master of Science in Electrical

degree Engineering

Field of : Electronics and Communications

specialization

Name of : Ain Shams University University

Date of issued : Dec 2014

degree

Current job : Avionics Engineer

Abstract

Unmanned Aerial Vehicles (UAVs) are considered an important component of fifth-generation (5G). Due to the rapid deployment, mobility, and flexibility of UAVs, they are used in several applications such as public safety, information dissemination, wireless backhaul, and package delivery. Also, they can be used to enhance the coverage and the rate performance of the communication networks.

Despite the several benefits and practical applications of using UAVs as aerial wireless devices, there are still many research challenges that need to be addressed such as channel modeling, coverage estimation, interference mitigation, network architecture, and design. In this thesis, the research scope is focused on air-to-ground, and air-to-air channel modeling, optimal 3D placement, and multi-UAVs deployment considering co-channel Interference.

First, new analytical models for air-to-ground (A2G) and air-to-air (A2A) path loss models are derived. They are proposed for the dense urban environment at frequencies of (1, 2, and 5.8) GHz. The proposed A2G model is compared with the other A2G model and shows better results of standard error and confidence interval validation. The A2A model is proposed to cover the line of sight (LOS) and the non-line of sight (NLOS) conditions. It is validated using standard error and confidence interval validation methods. The proposed A2A model shows better results than the other A2A model by considering the antenna and NLOS excess losses.

Then, 3D placement algorithms of a UAV as a relay station are proposed. They are presented to jointly optimize the transmitting power and relaying distance for coverage maximization. The placement algorithms are proposed for two systems. The first system is the cellular system that uses the UAV as a relay between the base station (BS) and ground user (C2U2G) and the second one is a new proposed system that replaces the cellular base station with Tethered UAV (TU2U2G). A Tethered UAV (TUAV) is a UAV that receives power over a cable from a ground control station. It has advantages of variable height up to (100m) and overcoming the problem of antenna down tilting of Cellular

Base station. The TU2U2G system shows better results than the C2U2G system in terms of optimum UAV height, maximum coverage radius, and maximum distance between BS and UAV.

Then, a Multi-UAVs deployment approach to provide wireless communication services for ground users is proposed. The challenge of multi-UAVs coverage maximization considering the co-channel interference is addressed in the proposed approach. To this end, analytical expressions for the downlink probability of coverage (P_c) using stochastic geometry are derived. Based on the probability of coverage-derived expressions, The deployment algorithms are proposed to achieve the target probability of coverage by reducing the co-channel interference using two methods: frequency reuse and adjustment of the separation distance between UAVs. The numerical results show a comparison between the Algorithms that illustrates the effect of using frequency reuse and adjusting the separation distance between UAVs on the probability of coverage and coverage area.

Finally, using the proposed models and placement algorithms, a UAV Network Planning (UNP) Tool is proposed. UNP is developed by MATLAB. It offers A2G path loss calculations, 3D placement of UAV as a relay station, and multi-UAV deployment.

Keywards: UAV, Path loss, Tethered UAV, Co-channel Interference, Multi-UAV deployments.

List of Contents

ABSTRACT I

LIST OF CON	NTENTS	III
LIST OF FIG	URES	VII
LIST OF TAB	BLES	XI
LIST OF ABB	BREVIATIONS	XIII
LIST OF SYM	/IBOLS	XV
CHAPTER 1	: INTRODUCTION	1
1.1 Unman	NED AERIAL VEHICLES (UAVS)	1
1.1.1 UA	AVs Applications	2
	AV Classification	
1.2 UAV	S AS A FLYING INFRASTRUCTURE	3
1.3 Resear	RCH QUESTIONS AND CONTRIBUTIONS	4
	esearch Question 1 and Contributions	
1.3.2 Re	esearch Question 2 and Contributions	5
	esearch Question 3 and Contributions	
1.4 List of	PUBLICATIONS	5
1.5 Thesis	STRUCTURE	6
CHAPTER 2	: LITERATURE REVIEW	7
2.1 UAV C	HANNEL MODELING	7
2.2 UAV PI	LACEMENT AS A RELAY STATION	8
2.3 Multi-	UAVS DEPLOYMENT	10
2.4 PROPAC	GATION MODELS BACKGROUND	10
2.4.1.1	Ray-Trancing simulation	10
2.4.1	.1.1 Simulation Environment	11
2.4.1.2	Free Space Path Loss (FSPL)	12
2.4.1.3	A2G path loss model	12
2.4.1.4	C2U path loss model	13

	2.4.1.5	Antenna Loss (La)	14
	2.4.1.6	Diffraction loss (Ld)	15
	PTER 3 : ELING 1	AIR TO GROUND & AIR TO AIR CHANNELS 7	
3.1	AIR TO C	GROUND CHANNEL MODELING	17
3	.1.1 Ray	7-Trancing simulation	17
	3.1.1.1	Simulation results	18
	3.1.1.2	Discussion of simulation results	19
3	.1.2 The	analytical model	21
	3.1.2.1	Mean Path Loss	21
	3.1.2.	1.1 Free Space Path Loss (FSPL):	21
	3.1.2.	1.2 Antenna Loss (La):	22
	3.1.2.	1.3 Excess Path Loss (Lex):	22
	3.1.2.	1.4 Probability of LOS	24
	3.1.2.2	Shadowing Loss	25
3	.1.3 The	proposed model Discussion	26
	3.1.3.1	The proposed model versus Ray-Tracing Simulation	26
	3.1.3.2	The proposed model versus the other air to ground mod 27	lels
	3.1.3.3	the proposed model at different frequencies and UAV	
	heights	28	
3.2	AIR TO A	AIR CHANNEL MODELING	30
	3.2.1.1	Free Space Path Loss (FSPL)	30
	3.2.1.2	Excess Path Loss (Lex)	31
	3.2.1.2	2.1 Antenna Loss(La)	31
	3.2.1.2	2.2 LOS Condition	31
	3.2.1.2	2.3 NLOS Condition	32
	3.2.1.3	Probability of LOS	33
3	.2.2 Sim	nulation	36
	3.2.2.1 S	Simulation scenarios	37
	3.2.2.2	Simulation results	37
	3.2.2.3	Model validation	38