

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

سورة البقرة الآية: ٣٢

Antimicrobial Efficacy of Chlorhexidine-Loaded Silver Nanoparticles on Enterococcus Faecalis Biofilm

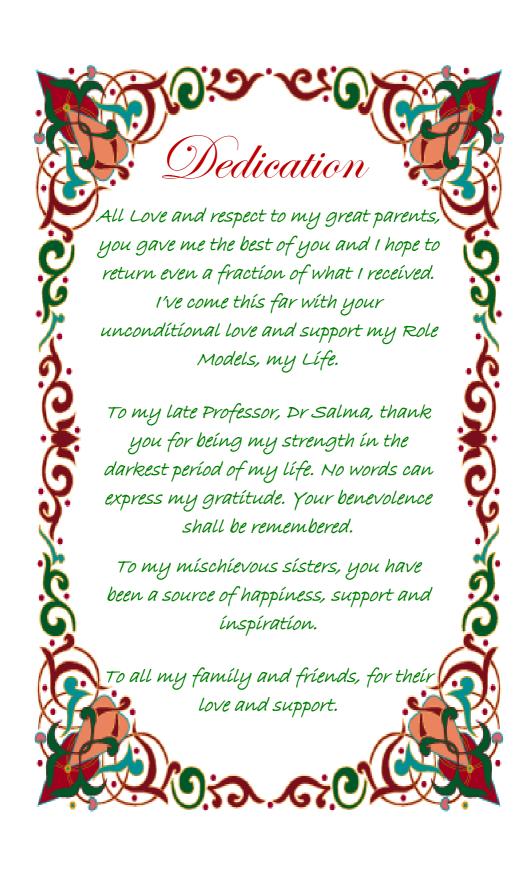
(An In-Vitro Study)

Thesis

Submitted to the Department of Endodontics, Faculty of Dentistry, Ain Shams University, in the partial fulfillment for Master's degree in Endodontic Dentistry

By

Salma Salah Abdel Fattah Ahmed Metwally


BDS, 2014

Faculty of Dentistry, Ain Shams University

Faculty of Dentistry

Ain Shams University

2022

Acknowledgement

I would like to express my gratefulness, and to deeply and sincerely thank my supervisors, with whom I was blessed, for their patience, helpfulness, guidance, humbleness and continued support despite my shortcomings.

Professor at the Department of Endodontics, Faculty of Dentistry, Ain Shams University for her unyielding help and support, and for her valuable and highly appreciated supervision and guidance through the course of this study.

Professor at the Department of Endodontics, Faculty of Dentistry, Ain Shams University for his valuable and highly appreciated supervision and guidance during the course of this study, and for his patience and humbleness.

Professor at the Department Microbiology and Immunology, Faculty of Medicine, Ain Shams University for her indefinite help and support and for her kind and easy-going personality during the course of this study.

Lecturer at the Department of Endodontics, Faculty of Dentistry, Ain Shams University for her extreme help, cooperation, encouragement, and for her kindness and continuous support during the course of this study.

Finally, I would like to thank all my professors, the staff members and all my colleagues in Endodontic Department, Faculty of Dentistry, Ain shams University, for their cooperation and support throughout the way.

Table of Contents

List of Figures	. 11
List of Tables	iv
List of Abbreviations	. v
Introduction	. 1
Review of Literature	. 4
I. Microbial Ecosystems	. 4
II. Antimicrobials efficacy in endodontics	15
III. Nanotechnology for endodontic disinfection	24
Aim of the Study	41
Materials and Methods	42
I. Materials	42
II. Methods	43
Results	56
I. SEM Biofilm	56
II. Percentage Reduction of Log CFU	57
III. Percentile Red Intensity	66
Discussion	79
Summary	87
Conclusion	91
References	92
Arabic Summary	•••

List of Figures

Fig No	Title	
Fig 1	Teeth preparation	45
	a: BL and MD periapical radiographs	
	b: Sample tooth before decoronation	
	c: Decoronated specimen	
Fig 2	a: TEM image of AgNPs at different scales	48
	(20±5nm)	
	b: UV-Vis light	
Fig 3	Setting for microbiological sampling and	50
	irrigants application	
Fig 4	a: Isomet device	55
	b: Cut mid- and apical- root sections	
Fig 5	SEM pictures	56
G	a: 2000 X	
	b & c: 3000 X	
Fig 6	Bar chart showing mean C _{r%} for different	58
	antibacterial materials	
Fig 7	Bar chart showing mean C _{r%} for different	60
	timings of applications	
Fig 8	Bar chart showing mean C _{r%} for different	62
_	groups and timings of application (A)	

Fig 9	Bar chart showing mean C _{r%} for different	65		
	groups and timings of application (B)			
Fig 10	Bar chart showing mean %R for different	67		
	groups			
Fig 11	Bar chart showing mean %R for different	68		
	timings of applications			
Fig 12	Bar chart showing men %R for different	69		
	tooth sections			
Fig 13	Bar chart showing mean %R for different	72		
	groups and timings of application (A)			
Fig 14	Bar chart showing mean %R for different	76		
	groups and timings of application (B)			
Fig 15	CLSM scans of Group I, a: middle/1 minute,	78		
	b: apical/1 minute (arrow referring to			
	biofilm), c: middle/10 minutes, d: apical/10			
	minutes. Group IV, e: middle/1 minute, f:			
	apical/1 minute, g: middle/10 minutes, h:			
	apical/10 minutes			

List of Tables

Table No	Title	Page
Table 1	Mean \pm standard deviation (SD) of $C_{r\%}$ for different antibacterial materials	58
Table 2	Mean \pm standard deviation (SD) of $C_{r\%}$ for different timings of applications	60
Table 3	Mean \pm standard deviation (SD) of $C_{r\%}$ for different groups and timings of application (A)	62
Table 4	Mean \pm standard deviation (SD) of $C_{r\%}$ for different groups and timings of application (B)	65
Table 5	Mean \pm standard deviation (SD) of %R for different groups	67
Table 6	Mean \pm standard deviation (SD) of %R for different timings of applications	68
Table 7	Mean \pm standard deviation (SD) of %R for different tooth sections	69
Table 8	Mean \pm standard deviation (SD) of %R for different groups and timings of application (A)	73
Table 9	Mean \pm standard deviation (SD) of %R for different groups and timings of application (B)	77

List of Abbreviations

Abbreviation Full Term

%R Percentile Red Intensity per Slide

 $\mathbf{C}_{\mathbf{r}\%}$ Percentage Reduction of log CFU

Ag⁺ Silver ions

Ag-GO AgNPs in aqueous Graphene Oxide matrix

Ag-MSNs@CHX CHX-loaded, Silver-decorated Mesoporous

Silica Nanoparticles

AgNPs Silver Nanoparticles

AO Acridine Orange

BHI Brain Heart Infusion

BL Buccolingual

CBD Calgary Biofilm Device

CFU Colony Forming Units

CHX Chlorhexidine

CI Conventional Irrigation

CLSM Confocal Laser Scanning Microscopy

DL Diode Laser

eDNA Extracellular DNA

EDTA Ethylene-Diamine-Tetraacetic Acid

EPS Extracellular Polymeric Substance

HBD3 Human Beta-Defensin 3

HEDP 1-Hydroxyethane 1,1-Diphosphonic Acid

HMP Human Microbiome Project

HUVECs Human Umbilical Vein Endothelial Cells

ICG Indocyanine Green

LPS Lipopolysaccharides

LTA Lipoteichoic acid

MBEC Minimum Biofilm Eradication Concentration

MBIC Minimum Biofilm Inhibitory Concentration

MD Mesiodistal

MDR Multiple Drug Resistance

MIC Minimum Inhibitory Concentration

NaOCl Sodium Hypochlorite

NIH-3T3 Mouse Embryonic Fibroblasts

NPs Nanoparticles

NSG Nanosilver gel

PC Im-based Positively-Charged Imidazolium-based

AgNPs Silver Nanoparticles

PCR Polymerase Chain Reaction

PDT Photodynamic Therapy

PI Propidium Iodide

PLLA Poly L-lactide

ppm Parts per Million

PVP Polyvinyl-pyrrolidone

qRT-PCR Quantitative Real-time PCR

RC Root Canal

RCT Root Canal Treatment

ROS Reactive Oxygen Species

rRNA ribosomal RNA

SCHNC Silver Cross-linked Hydrogel Nanocomposite

SD Standard Deviation

SEM Scanning Electron Microscope

TEM Transmission Electron Microscope(y)

UAI Ultrasonically-activated Irrigation

UV-Vis Ultraviolet-visible

VBNC Viable but Non-Cultivable

XPEF XP Endo Finisher activation

Introduction

Microbial etiology is the leading cause behind almost all clinical endodontic pathosis. Bacteria, viruses, fungi and archaea contribute to the endodontic microbiota and biofilm formation; which may subsequently lead to primary or secondary infections of the root canal system, with or without periapical or periodontal involvement. These infections may persist long after standard endodontic treatment protocols application. Commonly isolated endodontic microbiota includes *Fusobacterium*, *Prevotella*, *Treponema*, *Actinomyces*, *Streptococcus*, etc; among which *Enterococcus faecalis* is the most commonly isolated endodontic pathogen. *E faecalis* can exist in primary and secondary infections, as well as in acute and chronic ones, in planktonic and biofilm phases, and in single-, dual- and multi-species biofilm.

Biofilms are the most predominant form of microbial existence in natural environment, on surfaces, and within infected tissues. Microbial biofilm is defined as an assemblage of surface-associated microbial cells (i.e. sessile cells) that are enclosed in an extracellular polymeric substance matrix (EPS). Microbial biofilms are structurally and metabolically heterogeneous, multicellular communities, where aerobes and anaerobes coexist. They grow slowly via a predictable arcade of events starting with microbiota attachment to a suitable substrate followed by its adhesion and EPS production, the biofilm then slowly