

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / حسام الدين محمد مغربي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

ملاحظات: لا يوجد

Vascular Dysfunction in Thalassemia Major: Role of Endothelial Monocyte-Activating Polypeptide-II and Oxidative Stress in Relation to Cardiac and Renal Complications

Thesis

Submitted for the Partial Fulfillment of M.D. Degree in Pediatrics

Presented By

Sarah Mohammed Ibrahim

Master Degree in Pediatric, 2013
Faculty of Medicine –Ain Shams University

Supervised by

Prof. Dr. Azza Abdel Gawad Tantawy

Professor of Pediatrics Faculty of Medicine - Ain Shams University

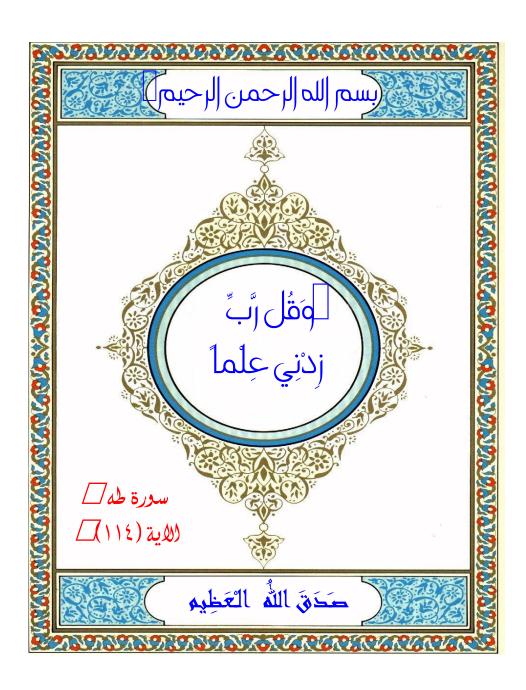
Dr. Mourad Alfy Ramzy Tadros

Consultant of Pediatrics Military Medical Services and Military Medical Academy

Prof. Dr. Fatma Soliman Elsayed Ebeid

Professor of Pediatrics Faculty of Medicine - Ain Shams University

Dr. Fatma Abdel Hamid


Assistant Professor of Biochemistry Biotechnology Research Institute - National Research Centre

Dr. Nanis Mohammed Salah Eldin

Lecturer of Pediatrics Faculty of Medicine - Ain Shams University

Faculty of Medicine - Ain Shams University

2022

Acknowledgment

First and foremost, I feel always indebted to ALLAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Azza Abdel Gawad Tantawy**, Professor of Pediatrics - Faculty of Medicine- Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Gen. Dr. Mourad Alfy Ramzy Tadros, Pediatric Consultant in Millatary Academy and Millitary Hospitals, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Prof. Dr. Fatma Soliman Elsayed Ebeid**, Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her great help, active participation and guidance.

I wish to introduce my deep respect and thanks to **Dr. Fatma Abdel Hamid,** Assistant Professor of Biochemistry, Biotechnology Research Institute - National Research Centre, for her kindness, supervision and cooperation in this work.

I would like to express my thanks to **Dr. Manis**Mohammed Salah Eldin, Lecturer of Pediatrics, Faculty of
Medicine, Ain Shams University for her support till this work was
completed.

My deepest appreciation goes to **Prof. Dr. Amira**Abdel Moneam Adly, Professor of Pediatrics, Pediatrics

Department, Ain Shams University for her constant guidance
and encouragement.

I would like to express my deepest thanks to **Prof. Dr. Eman Abdel Rahman Ismail**, Consultant of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her for her continuous guidance, encouragement, creativity and offering me her precious time for technical experience.

I would like to express my deepest gratitude **Dr.**Mahitab Morsy Hussein, Lecturer of Pediatrics, Pediatrics

Department, Ain Shams University, for offering me her precious time.

Special thanks goes to **Dr. Mervat Abdalhameed**Alfeky Assistant Professor of Clinical Pathology, Clinical
Pathology Department, Ain Shams University, for her help and
co-operation without which this work could not be possible

Also, special thanks to my colleague Marwa Adel Hashem Nasr for her help

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Sarah Mohammed Dorahim

Tist of Contents

Title	Page No.
List of Tables	i
List of Figures	iv
List of Abbreviations	viii
Abstract	xii
Introduction	1
Aim of the Work	5
Review of Literature	
Chpater (1): Thalassemia	6
Role of Oxidant Injury in β-Thalassemia Ineffect	ive
Erythropoiesis	
Role of Inflammatory Cytokines in Ineffect	
Erythropoiesis in β -Thalassemia Patients	
Clinical picture and complications of β thalassemia	
Laboratory diagnosis	
Management of β-thalassemia	
Chpater (2): Oxidative Stress in Thalassemia	
Intracellular oxidative events	28
Protective mechanisms in RBCS	34
Extracellular oxidative events	36
Antioxidant enzymes	37
Chpater (3): Endothelial Monocyte Activating Polyper	otide II 41
Discovery and isolation	41
ProEMAP/p43 and EMAP II (gene and protein)	41
Biological functions of proEMAP/p43 and EMAP II.	45
Mechanistic studies on proEMAP/p43 and EMAPII et	ffects51
From proEMAP/p43 to EMAP II	52
EMAP II in different diseases	54
EMAP II and therapy	56

Tist of Contents (Cont...)

Title	Page No.
Chpater (4): Endothelin-1 gene Polymorphism	58
The Endothelin System	58
Clinical impact of ET-1	62
ET-1 and ROS	63
The pro-inflammatory effect of ET-1	65
ET-1 polymorphism	66
Patients and Methods	68
Results	86
Discussion	135
Summary	161
Conclusion	
Recommendations	
References	169
Arabic Summary	

Tist of Tables

Table No.	Title	Page No.
Table 1: Table 2:	Comparison of the three main iron cheld Ongoing Clinical Assessment of Treatments for β-Thalassemia	New
Table 3:	Summary of all reported biological func and features of EMAP II	tions 46
Table 4:	Expression of endothelin receptors and producing ET-1	
Table 5:	Factors, which stimulate and inhibit re of ET-1	61
Table 6:	Clinical data of patients with β-thalass major	
Table 7:	Laboratory data of the studied patients	3 -TM
Table 8:	Comparison between β -TM patients controls as regards EMAP II and oxid	and ative
Table 9:	stress markers	of
Table 10:	in patients with β -TM and healthy controlled characteristics of patients with thalassemia major in relation to Endoth	th β-
Table 11:	1 gene polymorphism (G8002A) Laboratory characteristics of patients	96 with
Table 12:	β-thalassemia major in relation Endothelin-1 gene polymorphism (G800 Clinical data of β-TM patients with 1	2A) 98
1 abie 12:	serum ferritin above or lower than µg/L	2500
Table 13:	Laboratory data among β-TM patients	with
	mean serum ferritin above or lower 2500 µg/L	

Tist of Tables (Cont...)

Table 14: EMAP II and MDA levels in relation to clinical characteristics and iron overload of β-TM patients
β-TM patients10
· -
Table 15: Receiver operating characteristic curve
(ROC) for EMAP II as a predictor of heart
disease in β -TM patients
Table 16: Receiver operating characteristic curve
(ROC) for EMAP II as a predictor of
pulmonary hypertension risk in β-TM patients10
Table 17: Receiver operating characteristic curve
(ROC) for EMAP II as a predictor of
nephropathy in β-TM patients10
Table 18: Antioxidant levels (superoxide dismutase,
glutathione peroxidase and reduced
glutathione) in relation to clinical
characteristics and iron overload of β-TM
patients11
Table 19: Antioxidant levels (glutathione reductase
and catalase) in relation to clinical
characteristics and iron overload of β-TM
patients11
Table 20: Correlation between EMAP II and MDA
levels and clinical and laboratory data of β-
TM patients
Table 21: Multivariate linear regression analysis for
factors affecting EMAP II levels in β-TM patients
patients
factors affecting MDA levels in β -TM
patients12

Tist of Tables (Cont...)

Table No.	Title	Page No.
Table 23:	Correlation between antioxidant le (superoxide dismutase, glutath	
	peroxidase and reduced glutathione)	
	clinical and laboratory data of patients	
Table 24:	Multivariate linear regression analysis	
	factors affecting superoxide dismutase le	
	in β-TM patients	
Table 25:	Multivariate linear regression analysis	
	factors affecting glutathione peroxi	
T 11 00	levels in β-TM patients	
Table 26:	Multivariate linear regression analysis	
	factors affecting reduced glutathione le in β-TM patients	
Table 27:	Correlation between antioxidant le	
Table 21.	(glutathione reductase and catalase)	
	clinical and laboratory data of	
	patients	
Table 28:	Multivariate linear regression analysis	
	factors affecting glutathione reduc	ctase
	levels in β -TM patients	133
Table 29:	Multivariate linear regression analysis	
	factors affecting catalase levels in	
	patients	134

Tist of Figures

Fig. No.	Title	Page No.
Figure 1:	Mechanism of IE and hemolysthalassemia	
Figure 2:	β-thalassemia risk factors, complicand iron chelator-related adverse every	
Figure 3:	Current and future therapies for thalassemia major	
Figure 4:	Amelioration of free iron species be chelators and antioxidants	•
Figure 5:	Intracellular oxidative events Protective mechanisms in RBCs as circulation	nd the
Figure 6:	Oxidative events in the bone marro	
Figure 7:	Structure of the human EMAP II gen	ne42
Figure 8:	Functional domains within proEMAP/p43-EMAP II protein	
Figure 9:	Anti-angiogenic activities of EMAP endothelial cells	
Figure 10:	ETA receptor-mediated VSMC signathways	
Figure 11:	G(8002)A endothelin-1 genotypes	84
Figure 12:	EMAP II levels among β-TM patient healthy controls.	
Figure 13:	MDA levels among β-TM patient healthy controls.	
Figure 14:	Superoxide dismutase levels among patients and healthy controls	g β-TM
Figure 15:	Glutathione peroxidase levels among patients and healthy controls	.

Tist of Figures (Cont...)

Fig. No.	Title	Page No.
Figure 16:	Reduced glutathione levels among patients and healthy controls	•
Figure 17:	Glutathione reductase levels among patients and healthy controls	
Figure 18:	Catalase levels among β-TM patients healthy controls.	
Figure 19:	G(8002)A endothelin-1 genotypes amo TM patients	
Figure 20:	Association of Endothelin-1 polymorphism (G8002A) and heart dispulmonary hypertension risk nephropathy among β-TM patients	sease, and
Figure 21:	EMAP II levels in relation to heart di among β-TM patients	
Figure 22:	EMAP II levels in relation to pulme hypertension risk among β-TM patient	
Figure 23:	EMAP II levels in relation to nephrogamong β-TM patients	
Figure 24:	EMAP II levels in relation to compliant therapy among β-TM patients	
Figure 25:	EMAP II levels in relation to ferritin of 2500 μg/L among β-TM patients	
Figure 26:	EMAP II levels in relation to enodhth genotypes among β-TM patients	
Figure 27:	EMAP II levels in relation to endothe GG and GA genotypes versus AA gen among β-TM patients	otype
Figure 28:	Receiver operating characteristic (ROC) for EMAP II as a predictor of disease in β-TM patients	heart

Tist of Figures (Cont...)

Fig. No.	Title Page No.
Figure 29:	Receiver operating characteristic curve (ROC) for EMAP II as a predictor of pulmonary hypertension risk in β-TM patients
Figure 30:	Receiver operating characteristic curve (ROC) for EMAP II as a predictor of nephropathy in β -TM patients
Figure 31:	Correlation between EMAP II level and systolic blood pressure among β-TM patients
Figure 32:	Correlation between EMAP II level and transfusion index among β-TM patients 116
Figure 33:	Correlation between EMAP II level and LDH level among β-TM patients116
Figure 34:	Correlation between EMAP II level and serum ferritin among β-TM patients
Figure 35:	Correlation between EMAP II level and superoxide dismutase among β-TM patients
Figure 36:	Correlation between EMAP II level and glutathione reductase among β-TM patients
Figure 37:	Correlation between EMAP II level and catalase among β-TM patients
Figure 38:	Correlation between MDA and systolic blood pressure among β-TM patients119
Figure 39:	Correlation between MDA and WBC count among β-TM patients
Figure 40:	Correlation between MDA and LDH among β-TM patients120

Tist of Figures (Cont...)

Fig. No.	Title Page No.
Figure 41:	Correlation between MDA and serum ferritin among β-TM patients
Figure 42:	Correlation between MDA and superoxide dismutase among β-TM patients
Figure 43:	Correlation between MDA and catalase among β-TM patients
Figure 44:	Correlation between glutathione peroxidase and glutathione reductase among β-TM patients
Figure 45:	Correlation between superoxide dismutase and ferritin among β-TM patients
Figure 46:	Correlation between glutathione peroxidase and indirect bilirubin among β-TM patients
Figure 47:	Correlation between glutathione reductase and LDH among β-TM patients131
Figure 48:	Correlation between glutathione reductase and ferritin among β-TM patients
Figure 49:	Correlation between glutathione reductase and catalase among β-TM patients

Tist of Abbreviations

Abb.	Full term
ACC	Acute about our drome
	.Acute chest syndrome
	.Alanine aminotransferase
	.Aminoacyl tRNA synthetase
	. Aspartate aminotransferase
	. Aspartate aminotransferase
	.Body mass index
<i>BP</i>	.Blood pressure
<i>CAT</i>	
<i>CBC</i>	$. Complete\ blood\ count$
CDS	. Coding sequence
cm	. Centimeters
CRS	. Cardiorenal syndrome
DAG	. Diacylglycerol
DFO	. Deferoxamine
DFP	
DFX	
	. Downregulated in ovarian cancer 1
	. Endothelial cells
	.Enzyme-linked immunosorbent assay
	. Endothelial monocyte-activating polypeptide-II
	.Endothelial nitric oxide synthase
ET-1	
Fe	. Iron
FN	. Fibronectin
G-6-PD	. Glucose-6-phosphate dehydrogenase
G8002A	. Endothelin-1 gene polymorphism
GDF11	. Growth differentiation factor 11
GFR	. Glomerular filtration