

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

Salwa MAHMOUD Aki

Ain Shams University
Faculty of Women
For Arts, Science & Education
Botany Department

Bio-agents stress as regulators of virulence and apoptosis quorum sensing in pathogenic Candida species.

A Thesis

Submitted in Partial Fulfillment of the Requirements for the Degree of

M.Sc. Microbiology

By

Rahma Mostafa Mohammed Ibrahim El-Gazzar

B.Sc. (Microbiology and Chemistry, 2012)

Supervised By

Prof. Mehreshan Taha El Mokadem

Professor of Microbiology, Botany department at Women Faculty For Arts, Science and Education

Dr. Samia Hassan Abou-Zekry

Lecturer of Microbiology, Botany department at Women Faculty For Arts, Science and Education

Prof. Amal Ahmed Ibrahim Mekkawy

Professor of Mycology, The Regional Center of Mycology and Biotechnology, Al-Azhar University.

Ain Shams University
Faculty of Women
For Arts, Science & Education
Botany Department

Approval Sheet

Title: Bio-agents stress as regulators of virulence and apoptosis quorum sensing in pathogenic *Candida* species

Name: Rahma Mostafa Mohamed Ibrahim El-Gazzar

B.Sc. (Microbiology and Chemistry, 2012) Date: /

Advisory committee

Prof.Mehreshan Taha EL-Mokadem

Professor of Microbiology, Botany Department, Women Faculty For Arts, Science and Education

Prof. Yossria Mohamed Hassan Sheteh

Professor and head of Microbiology Department , Science Faculty, Ain shams University

Prof. Nagwa Mahmoud Sedky Osman

Professor of Microbiology and biotechnology, Science Faculty, Al-Azhar University

Prof. Amal Ahmed Ibrahim Mekkawy

Professor of Mycology, The Regional Center of Mycology and Biotechnology, Al-Azhar University

Ain Shams University
Faculty of Women
For Arts, Science & Education
Botany Department

Title: Bio-agents stress as regulators of virulence and apoptosis quorum sensing in pathogenic *Candida* species.

Name: Rahma Mostafa Mohammed Ibrahim El-Gazzar B.Sc. (Microbiology and Chemistry, 2012) Date: / /

SUPERVISION COMITTEE

Prof. Mehreshan Taha El-Mokkadem

Prof. of Microbiology Faculty of Women for Arts, Science and Education Ain Shams University

Dr. Samia Hassan Abou-Zekry

Lecturer of Microbiology Faculty of Women for Arts, Science and Education Ain Shams University

Prof. Amal Ahmed Ibrahim Mekkawy

Professor of Mycology, The Regional Center of Mycology and Biotechnology, Al-Azhar University

Announcement

This thesis has not been previously, submitted for any degree at this or at any other university.

Signature

Rahma Mostafa Mohammed Ibrahim El-Gazzar

DEDICATION

To my father's soul, my mother for their endless Love, Support & Encouragement, To My lovely Husband Mostafa who was always with me and has been source of strength through this entire experience, I hope I have made you proud

ACKNOWLEDGMENTS

First and foremost, praises and thanks to the God, the Almighty, for His showers of blessings throughout my research work to complete the research successfully.

I would like to express my grateful and hearty thanks to my dear, example and principal supervisor, **Prof. Mehreshan Taha El Mokadem**, Professor of Microbiology, Department of Botany, Faculty of woman for Arts, Science and Education, Ain Shams University, for suggesting the research point, valuable advice, keen guidance, comments, encouragement which made the completion of this thesis possible, support, useful suggestions, and patiently answering many questions and constructive criticism through the whole stages of this thesis, personally I learnt from her experiences and her highly professional attitude, patient and organization.

It is a great pleasure for me to express my grateful thanks to my supervisor **Prof. Amal Ahmed Ibrahim Mekkawy,** Professor of Mycology, The Regional Center of Mycology and Biotechnology, Al-Azhar University for her excellent advice, enthusiastic guidance, she has taught me the methodology to carry out the research and to present the research works as clearly as possible. It was a great privilege and honor to work and study under her guidance.

It is a great pleasure for me to express my grateful thanks to my supervisor **Dr.**Samia Hassan Abou Zekry, a lecturer of Microbiology, Department of Botany, Faculty of Women for Arts, Science and Education, Ain Shams University, for her advice, and patiently answering many questions, encouragement, through the whole stages of this thesis, I cannot begin to thank her enough, and she will always have my respect and love.

I wish to express my deepest appreciation to **Prof. Ahmed Khalaf allah**, Professor of Plant Ecology, Department of Botany, Faculty of Woman for Arts, Science and Education, Ain Shams University for his kind help and encouragement during the thesis.

I would like to thank **Dr. Shaimaa Selmi Sobieh**, Associate Professor of Cytology and Genetics, Faculty of Women for Art, Science and Education, for her advice and help to complete my thesis.

I would like also to thank **Department** of Botany, Faculty of Woman for Art for support.

Also I express my thanks to my lovely sisters **Raghda**, **Reem** and **Dr. Rana** who have supported me throughout my Candidature. I hope I have made you proud.

I would like to thank all of those that helped me directly or indirectly to complete my thesis and all who are proud of my achievements.

Rahma

CONTENTS

7Subject	
List of Tables	I
List of Figures	III
List of Photos	IIII
List of Abbreviations	VII
ABSTRACT	
AIM OF WORK	XI
I. INTRODUCTION	1
II. REVIEW OF LITERATURE	6
Ecology and epidemiology of Candida	7
Predisposing factors	14
i. Decreased Digestive Secretions	14
ii. Dietary Factors and Nutrients Deficiency	15
iii. Impaired Immune system and underlying disease states	16
iv. Impaired liver function	16
v. Drugs and prolonged use of antibiotics	17
vi. Altered bowel flora	18
Pathogenicity	19
Virulence factors of Candida	19
Adherence	19
Morphogenic transformation	21
Phenotypic switching	23
Hydrolytic enzymes	24
Candidalysin fungal peptide toxin	27

Biofilm formation	28
Quorum sensing of Candida	30
Apoptosis	32
Chemical antifungal and its toxicity	35
Major groups of active antimicrobial compounds from plants	41
Medicinal plants as anti-Candida	42
Garlic	43
Cinnamomum	46
III. Materials and Methods	51
. Sample collection	51
Isolation of Candida spp.	51
Identification	51
Macroscopically identification of Candida spp.	51
Microscopically identification of Candida spp.	52
Germ tube test for identification of Candida albicans	52
Media used	52
Sabouraud Dextrose	52
Potato Dextrose Agar (PDA)	53
Tween 80 opacity test medium	53
Blood Sabouraud Dextrose agar	53
Sabouraud's Dextrose broth (8% glucose).	53
Sabouraud's Egg Yolk agar	54
Medicinal plants used	54
Preparation of plant materials	54
Solvents	56
Extracts preparation:	56

Aqueous Extraction	56
Organic solvents extraction	56
Investigation of the antifungal activities of the tested plants	57
Minimum Inhibitory Concentrations (MICs) assay	58
Identification of the most sensitive Candida species using	58
integral system yeasts	
Effect of the potent plant extracts on some virulence	60
factors of the Candida isolates	00
Germ tube (GT) inhibition assay	60
Phospholipase activity	60
Esterase activity	61
Haemolytic activity	61
Biofilm formation	62
Tube method	62
Tissue culture plate method (TCP)	63
Observation the ulltra structures changes of Candida	64
species under electron microscope	
Scanning Electron Microscopy (SEM)	64
Transmission Electron Microscopy (TEM)	65
Apoptic effect of the most powerful plants against	66
Candida:	00
DNA fragmentation protocol	67
Detection of quorum sensing molecules	69
Protein profile analysis	70
Identification Assay for the Most Active Compounds	74

	Thin layer Chromatography (TLC)	74
	Bioassay of fungal growth preventing compounds:	75
	Chemical formula of the most active compounds using spectral measurements	76
	a- Infra Red spectra	76
	b- Mass spectroscopy	76
Statistical analysis		76
IV.	Results	77
	In vitro anti Candidal activity of tested plants	77
	Minimum Inhibition Concentration (MIC) of the most potent plant extracts against <i>Candida</i> spp.	86
	Identification of the most sensitive Candida species	89
	Assimilation reactions of sugars	90
	Chromogenic substrates evaluation	93
	Sensitivity to antimycotics	93
	Effect of potent plant extracts on tested virulence factors of <i>Candida</i>	95
	Germ tube formations	95
	Phospholipase	97
	Esterase	100
	Hemolysins	101
	Biofilm formation	101
	Effect of <i>Allium sativum</i> and <i>Cinnamomum cassia</i> extracts on the tested <i>Candida</i> morphogenesis	105

	Scanning Electron Microscope (SEM)	105
	Transmission Electron Microscope (TEM)	106
	Effect of potent plant extracts on Quorum sensing molecules production in the most sensitive <i>Candida</i>	111
	DNA fragmentation assay	113
	Protein profile of treated Candida tropicalis and Candida albicans	114
	Separation and identification of active <i>constituents</i> of <i>Allium sativum</i> and <i>Cinnamomum</i> extracts	117
	Infrared (IR) Spectrum	121
	Gas chromatography-mass spectrometry analysis (GC/MS)	123
V.	Discussion	126
VI.	Conclusion.	152
VII.	Recommendations	153
VIII.	Summary	154
IX.	References	158
Aral	bic Summary	196

	List of tables		
No	Title	Page	
1	List of the selected plants used for testing their anti-Candida activity	55	
2	Interpretation of Biofilm production	64	
3	Anti-Candidal activities of aqueous plant extracts against the tested Candida isolates after 48 hours incubation time at 37°C	82	
4	Anti-Candidal activities of organic plant extracts against the tested Candida isolates after 48 hours incubation time at 37°C	84	
5	Inhibition Zones Diameters (Mm) of the most active Plant Extracts on most sensitive Candida Species after 48 hours incubation time at 37oC.	86	
6	The MIC values of chloroform extract of <i>Allium sativum</i> and Benzene extract of <i>Cinnamomum cassia</i> against the sensitive isolates	87	
7	Assimilation ability of Candida isolates in the Integral System Yeasts Plus test (ISYP).	91	
8	Identification of Candida isolates by Chromogenic agar (13-well CHR) in ISYP	91	
9	Antibiogram of Candida spp in ISYP	95	
10	Phospholipase activities of the tested Candida isolates before and after exposure to plant extracts	99	
11	Esterase enzymes inhibition of tested Candida species before and after exposure to extracts).	100	
12	biofilm formation of Candida species and response to plant extract	104	
13	Interpretation of biofilm production	104	
14	Effect of different treatments on the protein patterns separated by SDS-PAGE in Candida spp.	116	