

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

Ain Shams University

Faculty of Women for Arts, Science and Education Physics Department

Study of Physical Properties of Spiropyran and its Applications

A thesis

Submitted for the Ph.D. Degree in Physics (Solid state physics)

Presented to

Physics Department

Faculty of Women for Arts, Science and Education

Ain Shams University,

Submitted By

Eman Emad El-Dine Mahmoud Abd El Megide El Garhy

Assistant teacher at physics department, faculty of women

Supervised by

Prof. Dr. Hamdia Abd El Hamid Zayed
Professor of Solid - state Physics Dept.,
Faculty of Women for Art, Sci., & Educ.
Ain Shams University

Prof. Dr. Mahmoud Mohamed El-Nahass
Professor of Solid - state Physics Dept.,
Faculty of Education
Ain Shams University

Prof. Dr. Hend Ali Mohammed.

Professor of Materials science Physics department
Faculty of Education
Ain Shams University

Physics Department

Approval Sheet

The thesis Entitled

Study of Physical Properties of Spiropyran and its Applications

Submitted By

Eman Emad El-Dine Mahmoud Abd El Megide El Garhy

the Ph.D. Degree in Physics (Solid state physics)

This thesis has been approved by supervisor Committee

1-	Prof. Dr. Hamdia Abd El hamid Zayed
	Professor of Solid State Physics
	Faculty of Women for Art, Science and Education
	Ain Shams University
2-	Prof. Dr.Mahmoud Mohamed El-Nahass
	•••••••••••••••••••••••••••••••••••••••
	Professor of Solid State Physics
	Faculty of Education, Ain Shams University
3-	Prof. Dr. Hend Ali Mohammed.
	Professor of Materials science Faculty of Education, Ain Shams University

Head of the Physics Department Prof. Dr. Hayam Abd El - Ghany

Student Name: Eman Emad El-Dine Mahmoud Abd El Megide El garhy

Scientific Degree: Ph.D. Degree in Physics

Faculty: Faculty of Women for Art, Science and Education

University: Ain Shams University

Graduation Date: 2012

M. Sc. Date: 2017

Registration Date: 12/2018

Grant Date: / 2022

Acknowledgment

Firstly, I must acknowledge my limitless thanks to Allah; the Ever-Thankful, for His help and bless. I am totally sure that this work would have never become truth, without His guidance. My deeps appreciation and sincere gratitude to my supervisors specially professor Prof. Dr. Hamdia Abd El-Hamid Zayed, Prof. Dr. Mahmoud M. El-Nahass and Prof. Dr. Hend Ali Mohammed. I am greatly indebted to them for all the efforts they have put in for the successful completion of this thesis.

There are many people to thank for their support and encouragement my Ph. D thesis. The completion of this thesis would have not been possible without the assistance and support of many people. I am grateful to all of them

I would like to thank whole heartedly my father, my mother, my husband and family members whose love and unconditional support, both on academic and personal front, enabled me to see the light of this day.

Eman emad El-din El Garhy

Contents

Acknowledgment	I
List of Figures	_
List of Tables	I
	I
Abstract	I
<u>Chapter 1</u>	
Introduction and Literature R	<u>eview</u>
Contents	Page
1.1 introduction	1
1.2 Photochromism	1
1.3 Spirobenzopyrans	4
1.4 Polymer	7
1.5 Polymers Categorization	7
1.5.1 Categorization based on source	8
1.6 Poly Methyl Methacrylate	8
1.7 Composite Materials	9
1.8. Literature Review	10

Chapter 2

Theoretical Background

Contents	Page	
2.1 Optical properties	17	
2.1.1 Optical Transition	18	
2.1.2 Dispersion in semiconductor materials	19	
2.2 Electrical Properties	23	
2.2.1 ac electrical conductivity 23		
2.2.1.1 Models of ac conductivity	25	
2.2.1.1.1A) Quantum mechanical tunneling	25	
2.2.1.1.2 B) Correlated barrier hopping of ele	ctrons 28	
2.3 Dielectric constant	30	
2.3.1 Polarization in dielectric	30	
2.4 Photovoltaic of organic materials	34	
2.4.1 The Ideal Solar Cell	36	
2.4.2 The components of ideal solar cell	37	
2.4.3 Organic solar cell characteristics	39	
2.4.4 Organic solar cell device architecture	33	
2.4.4.1. Single active-layer device	34	
2.4.4.2. Double active-layer device	e	34
2.4.4.3. Bulk heterojunction ph	notovoltaic cell	3

Chapter 3

Experimental techniques

Contents	Page
3.1. Preparation of DTNBI thin films	44
3.1.1. Substrate cleaning	44
3.1.2. Method of thin films preparation	45
3.2 Film thickness measurements	47
3.2.1 Quartz crystal thickness monitor	47
3.3 Composite preparation	48
3.4 Structural investigation of DTNBI	49
3.4.1 X-ray diffractometry (XRD) technique	49
3.4.2 Field Emission Scanning Electron Microscop	pe 50
3.4.3 Infrared spectroscopy technique	51
3.4.4 Differential Thermal Analysis (DTA)	52
3.5 Optical measurements	53
3.5.1 Film transmittance and reflectance	53
3.5.2 Determination of the optical constants	55
3.6 Dielectric measurement	56
3.7 Electrical measurements	56
3.7.1 Devices preparation and measurements	56

3.7.2.1 Hybrid organic-inorganic device preparation a	ınd
measurements	56
3.7.2.2 Current density-voltage (J-V-T) measurements	57
Chapter 4	
Results and discussion of DTNBI in powder and thin	film
form	
Contents	Page
4.1 Structural characterization of DTNBI in powder an	ıd
Thin film forms.	59
4.1.1 Differential Thermal Analysis (DTA)	59
4.1.2 X-ray diffraction studies of DTNB in powder form	n 60
4.1.3 X-ray diffraction studies for as deposited and	
annealed DTNB in thin film form	63
4.1.2 Scanning electron microscope studies	64
4.1.3 Infrared spectra investigation	64
4.2 Electrical conductivity and dielectric relaxation of	bulk
DTNBI	67
4.2.1 AC conductivity	67
4.2.2 Dielectric Property Dependence	72
4.3 Linear optical characterization of the as-deposit	ed and
annealing DTNBI thin films	80
4.3.1 Transmittance and reflectance spectra	8 0

4.3.2 Refractive index and dispersion analysis

82

4.3.3 Absorption properties	86
4.4 Electrical properties of DTNBI on p-Si heteroju	nction
	89
4.4.1 Dark current – voltage characteristic	89
4.4.2 Current – Voltage characteristicsof Au/ DTNE	BI /p-Si
under Illumination	102
Chapter 5	
Result and discussion of DTNBI composite	
Contents	Page
5.1 Structural characterization of Composite films ba	sed on
poly (methyl methacrylate) (PMMA) and 1',3-dihydro	0-
1',3',3'-trimethyl-6-nitrospiro[2H-1-benrzopyran-2,2'	-[2H]
indole] (DTNBI).	104
5.1.1 Infrared spectra investigation	104
5.2 Optical Properties of PMMA and PMMA/DTNBI	
Composite	107
5.2.1 linear optical investigations	108
5.2.2. Dispersion parameters and Nonlinear optical investigations	116
Conclusion	122
References	126
Arabic summary	Í

List of Figures

Figure (1-1)	Different families of photochromic compounds	2
Figure (1-2)	Schematic representation of the structure of spirobenzopyrans, showing the two orthogonal planes formed by the two halves of the molecule: the heterocyclic (A) and the benzopyran (B).	4
Figure (1-3)	Indoline spiro nitro-benzopyran (ISNBP) conversion of the SP (left) to the MC form (right), by exposure to UV light and the reversible switching form the MC to the SP form, by exposure to visible light or thermodynamically	5
Figure (1-4)	Molecular structure of (DTNBI)	6
Figure (2-1)	Types of electronic transition ((a) Allowed, (b) Forbidden) direct,((c) Allowed, (d) Forbidden) indirect	18
Figure (2-2)	Frequency exponent (s) as a function of temperature for all mechanisms of ac conduction	30
Figure (2-3)	Schematic representation of the different polarization mechanisms.	32
Figure (2-4)	Bilayer organic solar cell structure	34
Figure (2-5)	The Equivalent circuit of an ideal solar cell (full lines). Non-ideal components are shown by the dotted line	36
Figure (2-6)	Current-voltage characteristics of an OPV cell in the dark and under illumination.	40
Figure (2-7)	Single layer OPV cell	42
Figure (2-8)	Bulk heterojunction OPV cell	43
Figure (3-1)	Thermal evaporation process	46

Figure (3-2)	QUANTA FEG 250 field emission scanning	51
	electron microscope	
Figure (3-3)	Schematic of an FTIR system	52
Figure (3-4)	Schematic diagram showing the	53
	spectrophotometer	
Figure (3-5)	Measurements of film transmittance where the	54
	reference is clean substrate.	
Figure (3-6)	Measurements of film reflectance according to the	55
	reference (Al-mirror)	
Figure (3-7)	Schematic structure of Au/ DTNBI /p-Si/Al cell	57
Figure (3-8)	(a) Circuit for monitoring the I-V characteristics	58
	using CRO.	
	(b) Circuit for measuring the I-V characteristics	
	point by point in dark and under illumination.	
Figure (4-1)	DTA curve of powder DTNBI	59
Figure (4-2)	XRD of DTNBl in the powder form	61
Figure (4-3)	Plot of $(\beta \cos \theta)$ versus and $(4 \sin \theta)$.	62
Figure (4-4)	Plot of $(d \beta \cos \theta)^2$ versus $(d^2 \beta \cos \theta)$.	63
Figure (4-5)	XRD of DTNBI for as-deposited and anneled thin	64
	films.	
Figure (4-6)	SEM micrograph for the as-deposited DTNBI thin	65
	films	
Figure (4-7)	FT-IR spectra of DTNBI in different forms;	66
	powder, as deposited film	
Figure (4-8)	The total conductivity, $\sigma_t(\omega)$, as a function of	68
	frequency at various temperatures for DTNBI	

Figure (4-9)	The temperature dependence of dc electrical conductivity of DTNBI	69
Figure (4-10)	Frequency dependence of $ln\sigma_{ac}$ for DTNBI at different temperatures	70
Figure (4-11)	Temperature dependence of ac conductivity for DTNBI at different frequencies.	71
Figure (4-12)	Frequency dependence of dielectric constant (ϵ_1) of DTNBI at different temperatures	73
Figure (4-13)	Frequency dependence of dielectric loss (ϵ_2) of DTNBI at different temperatures	74
Figure (4-14)	The temperature dependence of dielectric constant (ϵ_1) of DTNBI at different frequencies	75
Figure (4-15)	The temperature dependence of dielectric loss (ϵ_2) of DTNBI at different frequencies	75
Figure (4-16)	Variation of lnε ₂ against lnω of DTNBI at different temperatures	77
Figure (4-17)	Temperature dependence for exponent (m) of DTNBI	77
Figure (4-18)	Frequency dependence of real part of complex electric modulus M' of DTNBI at different temperatures	79
Figure (4-19)	Frequency dependence of imaginary part of complex electric modulus M" of DTNBI at different temperatures	80
Figure (4-20)	The spectral dependence of the transmittance T (λ) and reflectance R (λ) of the different thickness of DTNBI thin films.	81
Figure (4-21)		82

Figure (4-22)	Spectral distribution of the refractive index, n for as deposited and annealed DTNBI thin films	83
Figure (4-23)	n^2 -1) $^{-1}$ against $(h\nu)^2$ for as-deposited and (Plot of annealed DTNBI thin film	84
Figure (4-24)	Plots of n^2 as a function of λ^2 for as-deposited and annealed DTNBI thin film	85
Figure (4-25)	The spectral dependence of the imaginary part of refractive index, (k) for the as-deposited and annealed thin films	86
Figure (4-26)	α versus λ of as-deposited and annealed DTNBI films	87
Figure (4-27-a)	$(\alpha h \upsilon)^{1/2}$ versus $h \upsilon$ of as-deposited and annealed DTNBI films.	88
Figure (4-27- b)	$(\alpha h \upsilon)^2$ versus $h \upsilon$ of as-deposited and annealed DTNBI films.	88
Figure (4-28)	Sets of typical J-V characteristics of Au/DTNBI/p- Si/Al heterojunction easured at different temperatures in dark	90
Figure (4-29)	Plot of Rj versus voltage for Au/DTNBI/p-Si heterojunction at different temperatures	91
Figure (4-30)	Variation of (ln J_f) with forward bias voltage for DTNBI/p-Si heterojunction at different temperatures	92
Figure (4-31)	Temperature dependence of the barrier height and ideality factor for Au/DTNBI/p-Si/Al heterojunction diode	93
Figure (4-32)	Variation of ln (Io/T2) against (1000/T) of n-DTNBI/p-Si heterojunction	94

Figure (4-33)	$\begin{tabular}{ll} Variation of (log J_f) with forward bias voltage for DTNBI/p-Si heterojunction at different temperatures. \end{tabular}$	96
Figure (4-34)	Dependence of log If on the reciprocal temperature 1000/T at different biasing voltages for DTNBI/p-Si heterojunction diode.	97
Figure (4-35)	Plot of [dV/d(ln I)] vs I at different temperatures for DTNBI/p-Si heterojunction	98
Figure (4-36)	Plot of H (I) vs I at different temperatures for DTNBI/p-Si heterojunction	98
Figure (4-37)	Voltage dependence of F (V) at different temperatures for DTNBI /p-Si heterojunction	100
Figure (4-38)	$Ln\ (J_R)$ versus reciprocal of temperatures for DTNBI/P-Si heterojunction at a certain value of the reverse bias voltage.	101
Figure (4-39)	Current-voltage characteristics and output power under illumination	103
Figure (5-1)	The spectra of FTIR for pure PMMA and DTNBI/PMMA composites films of different DTNBI content at range (500-4000) cm ⁻¹	106
Figure (5-2)	Transmittance spectra of pure PMMA and DTNBI /PMMA composites films of different DTNBI content	109
Figure (5-3)	Reflectance spectra of pure PMMA and DTNBI/PMMA nanocomposites films of different DTNBI content.	110
Figure (5-4)	variation of absorbance of (DTNBI /PMMA) composites with wavelength	111