

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / مني مغربي أحمد

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

1992

1992

ملاحظات: لا يوجد

Antitrypanosomal Activity of Rosemary (Rosmarinus officinalis) Plant Extract on Trypanosoma evansi Experimental Infection

A thesis submitted for partial fulfillment of the requirements for the degree of M.Sc.

In Zoology

By
Sara Samy Ibrahim Al Asrag
(BSc: Zoology-Chemistry)
Supervisors

Prof. Dr. Ameen Abd El-Bagi Ashour

Emeritus Professor of Parasitology, Department of Zoology, Faculty of Science, Ain Shams University

Prof. Dr. Hoda Abdel-Halim Taha

Professor of Parasitology, Department of Zoology, Faculty of Science, Ain Shams University

Assist. Prof. Dr. Safaa Mohamed Barghash

Associate Professor of Parasitology, Parasitology Unit, Animal and Poultry Health Department, Desert Research Center, Cairo

(2022)

Antitrypanosomal Activity of Rosemary (Rosmarinus officinalis) Plant Extract on Trypanosoma evansi Experimental Infection

A thesis submitted for partial fulfillment of the requirements for the degree of M.Sc.

In Zoology

By Sara Samy Ibrahim Al Asrag

(BSc: Zoology-Chemistry)

Department of Zoology Faculty of Science Ain Shams University Egypt

(2022)

Biography

Name: Sara Samy Ibrahim Al Asrag.

Date and place of birth: 21/11/1985, Cairo, Egypt.

Date of graduation: 2007

Degree awarded: Good

- B.Sc. Zoology-Chemistry (2007), Faculty of Science, Ain Shams University.
- Shared in Workshop on DNA Extraction & PCR at the Central Laboratory, Faculty of Science, Ain shams University (2019).
- Passed the Test of English Language Proficiency (TOEFL) with a score = 570 degrees.
- Took a lot of training courses and skills on different scientific instruments as HPLC – Amino acid analyser
 GC Mass -Electronic microscope at the Central Laboratory of Desert Research Center, Egypt.
- Occupation: A Specialist in Parasitology Unit, Department of Animal and Poultry Health, Animal Production and Poultry Division, Desert Research Center, Cairo, Egypt.

• **Date of Registration:** 2017

I dedicate this work to my small family, headed by my dear husband Mostafa and my Young children. Also, I dedicate this work to my precious Mum and Dad.

Acknowledgement

First, I am deeply thankful to Allah the most merciful and generosity to the grace of whom and present work was realized.

I am deeply grateful to my major **Prof. Dr. Ameen Abd El-Baqi Ashour**, Emeritus Professor of Parasitology, Department of Zoology, Faculty of Science, Ain Shams University, for his supervision, continued assistance and his guidance through writing the manuscript and all stages of Thesis.

Special thank and sincere gratitude to **Prof. Dr. Hoda Abdel-Halim Taha,** Professor of Parasitology, Department of Zoology, Faculty of Science, Ain Shams University for her detailed and her wide knowledge, continued assistance and her valuable criticism and critical reading of the manuscript.

I would like to express my deepest, sincere gratitude and a lot of appreciation to **Ass. Prof. Dr. Safaa Mohamed Barghash**, Associate Professor of Parasitology, Head of Parasitology Unit, Animal and Poultry Health Department, Desert Research Center, Cairo who has the first and greatest credit for getting this job out like this, firstly from suggesting the problem, supervision, continued assistance and her guidance through achieving this work.

Also, my special gratitude, appreciation, and profound thanks go to **Prof. Dr. Sherein Abdelgayed**, Professor of Pathology, Pathology Department, Faculty of Veterinary Medicine, Cairo University, who carried out pathology section.

I wish to express my sincere thanks; deepest gratitude, my great regards and warm thanks to all staff members of the Animal and Poultry Health Department, Desert Research Center for offering me work facilities, their encouragement and friendly help during the present work. And all staff members of the Department of Zoology, Faculty of Science, Ain Shams University.

ABSTRACT

Trypanosoma evansi is the most geographically widespread African trypanosome affecting mammals and causes an unlimited severe economic loss in developing countries. The current study aimed to evaluate the in vitro and in vivo activity of rosemary (Rosmarinus officinalis) plant extracts on T. evansi experimental infection compared to the standard chemical drug diminazene aceturate. Eight extracts were prepared at concentrations of 4, 10, & 20mg/mL (four from leaves and four from stem bark) of the rosemary plant collected from Matrouh Governorate. Four Solvents: petroleum ether, ethyl acetate, ethyl alcohol, and distilled water, were used in ascending order of increasing polarity. Also, phytoscreening of those extracts and their toxicity were assessed. Besides, in vitro and in vivo studies evaluated T. evansi viability posttreatments and the efficiency of those extracts. Also, the potential haematological, biochemical and histopathological abnormalities associated with the administration of treatments. The results of the phytochemical screening showed significant differences (p≤0.05) between leaves and stem bark components. Different extracts of concentration 20mg/mL affected the in vitro activity of T. evansi more than others but less than diminazene aceturate without acute toxicity. Statistical analysis corroborated anti-trypanosomal activity-specifically correlated to treatment based on the solvent type and plant part extracted. In vivo results showed a significant reduction in infection-induced alterations in treated groups compared to the untreated healthy group. Some extracts did not achieve complete restoration of some selected biochemical indices to a pre-infection state and confirmed by histopathological sections could not prevent the disease-induced liver damage.

KEY WORDS: *Trypanosoma evansi*, Rosemary extracts, *In vitro, In vivo*, Organic solvents, Rats.

CONTENTS

Title	Page
ABSTRACT	
LIST OF ABBREVIATIONS	I
LIST OF TABLES	IV
LIST OF FIGURES	VI
1.GENERAL INTRODUCTION	1
AIM OF THE WORK	6
2. REVIEW OF LITERATURES	7
2.1. Taxonomy of <i>Trypanosoma evansi</i>	7
2.2. Geographical distribution and transmission of <i>T. evansi</i>	9
2.3. Signs and symptoms of <i>T. evansi</i> infection	10
2.4. Pathogenicity of <i>T. evansi</i> infection	11
2.5. Control and treatment of <i>T. evansi</i>	13
2.5.1. Chemotherapy treatment	13
2.5.2. Medicinal Plant extracts for treatment	18
2.5.2.1. In vitro antitrypanosomal activity against T. evansi	18
2.5.2.2. In vivo antitrypanosomal activity against T. evansi	34
2.5.2.3. Uses of rosemary as a medicinal plant	38
3. MATERIAL AND METHODES	
3.1. Study area	43
3.2. Plant material	43
3.3. Solvents	43
3.4. Phytochemical analysis	44
3.4.1. Total alkaloids	45
3.4.2. Total flavonoids	46
3.4.3. Total saponins	46
3.4.4. Total tannins	47
3.4.5. Total phenols	48
3.5. Plant extraction	49
3.6. Approval ethics and experimental animals	49
3.7. Parasites	50
3.8. <i>In vitro</i> screening test for trypanosome activity	50
3.9. Acute toxicity study	52
3.10. <i>In vivo</i> efficacy of <i>R. officinalis</i> different extracts	53

3.10.1. Determination of parasitaemia	54
3.10.2. Matching of trypanosomes	54
3.10.3. Blood sample collection	55
3.10.4. Determination of haematological parameters	56
3.10.4.1. Packed cell volume	56
3.10.4.2. Erythrocytes count	56
3.10.4.3. Total leukocytes count	56
3.10.4.4. Platelet count	57
3.10.5. Estimation of biochemical parameters	57
3.10.6. Blood biochemical analysis	58
3.10.6.1. Determination of glucose in plasma	58
3.10.6.2. Determination of liver function	59
3.10.6.3. Determination of kidney function	63
3.10.6.4. Determination of plasma soluble protein and its fraction	64
3.10.6.5. Determination of lipid profile	66
3.10.7. Histological Preparation	68
3.10.8. Statistical analysis	69
4. RESULTS	70
4.1. Yields of different extracts	70
4.2. Phytochemical screening analysis	71
4.3. <i>In vitro</i> activity	72
4.4. Lethal concentrations (LC ₅₀ and LC ₉₀)	74
4.5. Therapeutic study and acute toxicity	76
4.6. <i>In vivo</i> activity and related parasitaemia	76
4.7. Haemogram parameters	80
4.8. Biochemical analysis	85
4.9. Histological prameters	94
4.9.1. Gross morphology	94
4.9.2. Histological changes	94
5. DISCUSSION	135
6. CONCLUSION & RECOMMENDATIONS	143
7. SUMMARY	144
8. REFERENCES	
الملخص العربي	١
الملخص العربي المستخلص العربي	<u> </u>

LIST OF ABBREVIATIONS

Abbrev.	Full-term
CNS	Central nervous system
DA	Diminazene aceturate
EOs	Essential oils
g	Gram
h	Hour
IC ₅₀	50% Inhibitory concentration
KDNA	Kinetoplast DNA
kg	Kilogram
L. donovani	Leishmania donovani
L. infantum	Leishmania infantum
L. mexicana	Leishmania mexicana
LC ₁₀₀	100% Lethal concentration
LC ₅₀	50% Lethal concentration
LC ₉₀	90% Lethal concentration
LD_{50}	50% Lethal dose
LD ₉₀	90% Lethal dose
M	Molar
mg	Milligram
mL	Milliliter

Abbrev.	Full-term
nm	Nanomole
P. falciparum	Plasmodium falciparum
PBS	Phosphate-buffered saline
PBSG	Phosphate-buffered saline glucose
PCV	Packed cell volume
SI value	Selectivity index value
T. b. brucei	Trypanosoma brucei brucei
T. b. gambiense	Trypanosoma brucei gambiense
T. b. rhodesiense	Trypanosoma brucei rhodesiense
T. cruzi	Trypanosoma cruzi
T. equiperdum	Trypanosoma equiperdum
T. evansi	Trypanosoma evansi
wt	Weight
μg	Microgram
μl	Microliter
WBCs	White blood cells count
RBCs	Red blood cells count
HGB	Haemoglobin
PLT	Platelet count
TP	Total protein
Alb	Albumin

Abbrev.	Full-term
Glb	Globulin
A/G%	The ratio of albumin to globulin.
CREAT.	Creatinine
UA.	Uric acid
ALT	Alanine transferase.
AST	Aspartate aminotransferase
ALP	Alkaline phosphatase
T.Chol.	Total cholesterol
TG.	Triglycerides
BilD.	Direct bilirubin
GLU.	Glucose
GOD	Glucose oxide
POD	Peroxidase
LDH	Lactate dehydrogenase enzyme

LIST OF TABLES

Table No.	Title	Page No.
(1)	Description of experimentally infected and treated groups	54
(2)	Showing the <i>in vivo</i> experiment and the used doses	55
(3)	Yield of extracts using different solvents	70
(4)	Phytochemical screening of <i>R. officinalis</i>	71
(5a, b)	In vitro effect of organic and aqueous extracts of R. officinalis at concentrations of 4&10 mg/ml on trypanosomal count	72
(6)	In vitro effect of 20mg/ml of different extract types on trypanosomes counts and viability	73
(7)	Mean percentage of LC50 and LC90 inhibition of <i>T. evansi</i> performed with eight extracts of <i>R. officinalis</i>	75
(8)	Description of experimentally infected and treated groups and the value of used doses	78
(9)	Weekly parasitaemia levels along with the experiment	79
(10)	Leucocytes count and lymph% in all groups	80
(11)	Means (\pm SE) of red blood cells count and haemoglobin level in rats' experimentally infected with T . $evansi$ in different treated groups	82
(12)	Means (±SE) of platelets level and haematocrit values in rats experimentally infected with <i>T. evansi</i> in different treated groups	84
(13)	Mean (± SE) of glucose (mg/dL) levels of rats experimentally infected with <i>T. evansi</i> in different treated groups	86

Table No.	Title	Page No.
(14)	Means (±SE) of lipid profile in rats experimentally infected with <i>T. evansi</i> in different treated groups	87
(15)	Means (±SE) of total proteins and A/G ratio in rats experimentally infected with <i>T. evansi</i> in different treated groups	88
(16)	Means (±SE) of liver enzymes and Lactate dehydrogenase enzyme (LDH) in rats experimentally infected with <i>T. evansi</i> in different treated groups	90
(17)	Means (\pm SE) of total bilirubin levels in rats experimentally infected with T . $evansi$ in different treated groups	92
(18)	Changes in parameters of kidney functions due to treatment	93
(19)	Histopathological scoring lesions for the presence of inflammation in the tissues due to treatments	98